Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-17354350951x-879956879831702\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-17354350951xz^2-879956879831702z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-22491238831875x-41055200711711381250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(56574703694916774279864628583132728233294865864481189751219850357324243169288485020774193411170561726251047037727125597227921796466972517864679704002266438255328532761204619674325014097507359389862070928854107852837651447006284836175969417142057916054272257653795302564861638779470944589301720273339126/50887848691402861632702170510019612563136705008618847975650422107712765982494708425661114510929133611448502058912392184266869407644734653499968671528019861747424754819834917026740732971956273563532366573205675076782098839474260513022402290676340327719818732111218325625383154808677144028168890625, 422196226362037065235622466898871147113334475201410966858543800280761369460941862384511959326099319560254603476814128347478276955577000714700198711526158802941866347839137693515591184210739924211547544975435318882327925702770800108913227015016013073547172504064792334666757701379834992537093781567952382520894454465124904224737700032598214576599042194972477305004171142640854407625835794791122881757396732908005226133684543037760471080236360739043130376/363012129755381391694240130389478092138974031523956921812704061516370768973622882874747904667741098741722715725080780395965395860037541665968154880827785502487662897236622909261744697588721842411690763548080870520261909272972556345570394041305682052652933300889504093976345396927105385570283482644378392149227496225835147436898298106986924126506500341910267738065568219324474657388440101735675327989160863335748351560409571736437314634037109375)$ | $694.87726381005310739426387471$ | $\infty$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 477950 \) | = | $2 \cdot 5^{2} \cdot 11^{2} \cdot 79$ |
|
| Discriminant: | $\Delta$ | = | $-163924523478320000000000$ | = | $-1 \cdot 2^{13} \cdot 5^{10} \cdot 11^{10} \cdot 79 $ |
|
| j-invariant: | $j$ | = | \( -\frac{2282033126907134425}{647168} \) | = | $-1 \cdot 2^{-13} \cdot 5^{2} \cdot 11^{2} \cdot 79^{-1} \cdot 91033^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $4.2613698215598709310891988597$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.92192550053281183220361310037$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9894268827023249$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.296802346756302$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $694.87726381005310739426387471$ |
|
| Real period: | $\Omega$ | ≈ | $0.0065768428546017148721814720439$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $4.5700985673143385767017360601 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.570098567 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.006577 \cdot 694.877264 \cdot 1}{1^2} \\ & \approx 4.570098567\end{aligned}$$
Modular invariants
Modular form 477950.2.a.z
For more coefficients, see the Downloads section to the right.
| Modular degree: | 543628800 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_{13}$ | nonsplit multiplicative | 1 | 1 | 13 | 13 |
| $5$ | $1$ | $II^{*}$ | additive | 1 | 2 | 10 | 0 |
| $11$ | $1$ | $II^{*}$ | additive | -1 | 2 | 10 | 0 |
| $79$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 632 = 2^{3} \cdot 79 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 1 \\ 631 & 0 \end{array}\right),\left(\begin{array}{rr} 161 & 2 \\ 161 & 3 \end{array}\right),\left(\begin{array}{rr} 631 & 2 \\ 630 & 3 \end{array}\right),\left(\begin{array}{rr} 317 & 2 \\ 317 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 159 & 2 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[632])$ is a degree-$29530275840$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/632\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 238975 = 5^{2} \cdot 11^{2} \cdot 79 \) |
| $5$ | additive | $2$ | \( 19118 = 2 \cdot 11^{2} \cdot 79 \) |
| $11$ | additive | $32$ | \( 3950 = 2 \cdot 5^{2} \cdot 79 \) |
| $13$ | good | $2$ | \( 238975 = 5^{2} \cdot 11^{2} \cdot 79 \) |
| $79$ | split multiplicative | $80$ | \( 6050 = 2 \cdot 5^{2} \cdot 11^{2} \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 477950z consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 477950l1, its twist by $-55$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.