Show commands for:
SageMath
sage: E = EllipticCurve("gj1")
sage: E.isogeny_class()
Elliptic curves in class 476850gj
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
476850.gj2 | 476850gj1 | [1, 1, 1, 191312, 28264781] | [2] | 7077888 | \(\Gamma_0(N)\)-optimal* |
476850.gj1 | 476850gj2 | [1, 1, 1, -1036938, 259175781] | [2] | 14155776 | \(\Gamma_0(N)\)-optimal* |
Rank
sage: E.rank()
The elliptic curves in class 476850gj have rank \(0\).
Complex multiplication
The elliptic curves in class 476850gj do not have complex multiplication.Modular form 476850.2.a.gj
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.