Show commands for:
SageMath
sage: E = EllipticCurve("df1")
sage: E.isogeny_class()
Elliptic curves in class 476850df
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
476850.df1 | 476850df1 | [1, 0, 1, -6531551, 6373664498] | [2] | 41287680 | \(\Gamma_0(N)\)-optimal |
476850.df2 | 476850df2 | [1, 0, 1, -1907551, 15224000498] | [2] | 82575360 |
Rank
sage: E.rank()
The elliptic curves in class 476850df have rank \(1\).
Complex multiplication
The elliptic curves in class 476850df do not have complex multiplication.Modular form 476850.2.a.df
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.