Show commands for:
SageMath

sage: E = EllipticCurve("476850.ea1")

sage: E.isogeny_class()

## Elliptic curves in class 476850.ea

sage: E.isogeny_class().curves

LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|

476850.ea1 | 476850ea2 | [1, 0, 1, -84966151, 301270362698] | [u'2'] | 74317824 | \(\Gamma_0(N)\)-optimal^{*} |

476850.ea2 | 476850ea1 | [1, 0, 1, -6358151, 2717178698] | [u'2'] | 37158912 | \(\Gamma_0(N)\)-optimal^{*} |

^{*}optimality has not been proved rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 2 curves highlighted, and conditionally curve 476850.ea2.

## Rank

sage: E.rank()

The elliptic curves in class 476850.ea have rank \(1\).

## Modular form 476850.2.a.ea

sage: E.q_eigenform(10)

## Isogeny matrix

sage: E.isogeny_class().matrix()

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.