Show commands:
SageMath
E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 475c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
475.a2 | 475c1 | \([1, -1, 1, 0, 2]\) | \(27/19\) | \(-2375\) | \([2]\) | \(16\) | \(-0.67323\) | \(\Gamma_0(N)\)-optimal |
475.a1 | 475c2 | \([1, -1, 1, -25, 52]\) | \(13312053/361\) | \(45125\) | \([2]\) | \(32\) | \(-0.32666\) |
Rank
sage: E.rank()
The elliptic curves in class 475c have rank \(1\).
Complex multiplication
The elliptic curves in class 475c do not have complex multiplication.Modular form 475.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.