Show commands:
SageMath
E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 475b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
475.c2 | 475b1 | \([1, -1, 0, 8, 291]\) | \(27/19\) | \(-37109375\) | \([2]\) | \(80\) | \(0.13149\) | \(\Gamma_0(N)\)-optimal |
475.c1 | 475b2 | \([1, -1, 0, -617, 5916]\) | \(13312053/361\) | \(705078125\) | \([2]\) | \(160\) | \(0.47806\) |
Rank
sage: E.rank()
The elliptic curves in class 475b have rank \(1\).
Complex multiplication
The elliptic curves in class 475b do not have complex multiplication.Modular form 475.2.a.b
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.