Show commands:
SageMath
E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 475.b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
475.b1 | 475a3 | \([0, -1, 1, -19233, -1020257]\) | \(-50357871050752/19\) | \(-296875\) | \([]\) | \(324\) | \(0.83816\) | |
475.b2 | 475a2 | \([0, -1, 1, -233, -1382]\) | \(-89915392/6859\) | \(-107171875\) | \([]\) | \(108\) | \(0.28885\) | |
475.b3 | 475a1 | \([0, -1, 1, 17, -7]\) | \(32768/19\) | \(-296875\) | \([]\) | \(36\) | \(-0.26045\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 475.b have rank \(0\).
Complex multiplication
The elliptic curves in class 475.b do not have complex multiplication.Modular form 475.2.a.b
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.