Minimal Weierstrass equation
Minimal equation
Minimal equation
Simplified equation
\(y^2=x^3+x^2+4800x+141700\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z+4800xz^2+141700z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+388773x+102132954\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Infinite order Mordell-Weil generators and heights
$P$ | = |
\(\left(18, 484\right)\)
|
\(\left(370, 7260\right)\)
|
$\hat{h}(P)$ | ≈ | $1.1191706094630808509323485324$ | $1.7795140883803290451792926643$ |
Torsion generators
\( \left(-26, 0\right) \)
Integral points
\( \left(-26, 0\right) \), \((-1,\pm 370)\), \((18,\pm 484)\), \((30,\pm 560)\), \((95,\pm 1210)\), \((128,\pm 1694)\), \((370,\pm 7260)\), \((870,\pm 25760)\), \((7520,\pm 652190)\)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 474320 \) | = | $2^{4} \cdot 5 \cdot 7^{2} \cdot 11^{2}$ |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | $-15555722828800 $ | = | $-1 \cdot 2^{10} \cdot 5^{2} \cdot 7^{3} \cdot 11^{6} $ |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( \frac{19652}{25} \) | = | $2^{2} \cdot 5^{-2} \cdot 17^{3}$ |
Endomorphism ring: | $\Z$ | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ | ||
Faltings height: | $1.2172692930305759964990814682\dots$ | ||
Stable Faltings height: | $-1.0457785310990586929892552745\dots$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
| |||
Analytic rank: | $2$ | ||
sage: E.regulator()
magma: Regulator(E);
| |||
Regulator: | $1.6905885918118215260560467230\dots$ | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
| |||
Real period: | $0.46921138317369852570968280429\dots$ | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
| |||
Tamagawa product: | $ 64 $ = $ 2^{2}\cdot2\cdot2\cdot2^{2} $ | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
| |||
Torsion order: | $2$ | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
| |||
Analytic order of Ш: | $1$ (rounded) | ||
sage: r = E.rank();
gp: ar = ellanalyticrank(E);
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
| |||
Special value: | $ L^{(2)}(E,1)/2! $ ≈ $ 12.691894584667199999508005565 $ |
Modular invariants
Modular form 474320.2.a.br
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 983040 | ||
$ \Gamma_0(N) $-optimal: | not computed* (one of 2 curves in this isogeny class which might be optimal) | ||
Manin constant: | 1 (conditional*) |
Local data
This elliptic curve is not semistable. There are 4 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord($N$) | ord($\Delta$) | ord$(j)_{-}$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{2}^{*}$ | Additive | 1 | 4 | 10 | 0 |
$5$ | $2$ | $I_{2}$ | Split multiplicative | -1 | 1 | 2 | 2 |
$7$ | $2$ | $III$ | Additive | -1 | 2 | 3 | 0 |
$11$ | $4$ | $I_0^{*}$ | Additive | -1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.6.0.3 |
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.
No Iwasawa invariant data is available for this curve.
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 474320br
consists of 2 curves linked by isogenies of
degree 2.