Properties

Label 474320.cl2
Conductor $474320$
Discriminant $-2.127\times 10^{18}$
j-invariant \( \frac{161017136}{1953125} \)
CM no
Rank $1$
Torsion structure trivial

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

\(y^2=x^3-x^2+116604x+68431420\) Copy content Toggle raw display (homogenize, simplify)
\(y^2z=x^3-x^2z+116604xz^2+68431420z^3\) Copy content Toggle raw display (dehomogenize, simplify)
\(y^2=x^3+9444897x+49914839898\) Copy content Toggle raw display (homogenize, minimize)

comment: Define the curve
 
sage: E = EllipticCurve([0, -1, 0, 116604, 68431420])
 
gp: E = ellinit([0, -1, 0, 116604, 68431420])
 
magma: E := EllipticCurve([0, -1, 0, 116604, 68431420]);
 
oscar: E = EllipticCurve([0, -1, 0, 116604, 68431420])
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 
oscar: short_weierstrass_model(E)
 

Mordell-Weil group structure

\(\Z\)

magma: MordellWeilGroup(E);
 

Infinite order Mordell-Weil generator and height

$P$ =  \(\left(\frac{2205}{4}, \frac{138545}{8}\right)\) Copy content Toggle raw display
$\hat{h}(P)$ ≈  $5.8302054295070014341984516041$

sage: E.gens()
 
magma: Generators(E);
 
gp: E.gen
 

Integral points

None

comment: Integral points
 
sage: E.integral_points()
 
magma: IntegralPoints(E);
 

Invariants

Conductor: \( 474320 \)  =  $2^{4} \cdot 5 \cdot 7^{2} \cdot 11^{2}$
comment: Conductor
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
oscar: conductor(E)
 
Discriminant: $-2126758980500000000 $  =  $-1 \cdot 2^{8} \cdot 5^{9} \cdot 7^{4} \cdot 11^{6} $
comment: Discriminant
 
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
oscar: discriminant(E)
 
j-invariant: \( \frac{161017136}{1953125} \)  =  $2^{4} \cdot 5^{-9} \cdot 7^{2} \cdot 59^{3}$
comment: j-invariant
 
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
oscar: j_invariant(E)
 
Endomorphism ring: $\Z$
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
sage: E.has_cm()
 
magma: HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: $2.1976414133636273919477487812\dots$
gp: ellheight(E)
 
magma: FaltingsHeight(E);
 
oscar: faltings_height(E)
 
Stable Faltings height: $-0.11204105976062585472982866990\dots$
magma: StableFaltingsHeight(E);
 
oscar: stable_faltings_height(E)
 
$abc$ quality: $1.0096573935852708\dots$
Szpiro ratio: $3.7955885564630627\dots$

BSD invariants

Analytic rank: $1$
sage: E.analytic_rank()
 
gp: ellanalyticrank(E)
 
magma: AnalyticRank(E);
 
Regulator: $5.8302054295070014341984516041\dots$
comment: Regulator
 
sage: E.regulator()
 
G = E.gen \\ if available
 
matdet(ellheightmatrix(E,G))
 
magma: Regulator(E);
 
Real period: $0.19258797284829046221989239931\dots$
comment: Real Period
 
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: $ 6 $  = $ 1\cdot1\cdot3\cdot2 $
comment: Tamagawa numbers
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
oscar: tamagawa_numbers(E)
 
Torsion order: $1$
comment: Torsion order
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
oscar: prod(torsion_structure(E)[1])
 
Analytic order of Ш: $1$ ( rounded)
comment: Order of Sha
 
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Special value: $ L'(E,1) $ ≈ $ 6.7369646697471001478807506750 $
comment: Special L-value
 
r = E.rank();
 
E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 

BSD formula

$\displaystyle 6.736964670 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.192588 \cdot 5.830205 \cdot 6}{1^2} \approx 6.736964670$

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
 
E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
 
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
 
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
 
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
/* self-contained Magma code snippet for the BSD formula (checks rank, computes analyiic sha) */
 
E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
 
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
 
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
 
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 474320.2.a.cl

\( q - q^{3} - q^{5} - 2 q^{9} - 2 q^{13} + q^{15} + 6 q^{17} + 8 q^{19} + O(q^{20}) \) Copy content Toggle raw display

comment: q-expansion of modular form
 
sage: E.q_eigenform(20)
 
\\ actual modular form, use for small N
 
[mf,F] = mffromell(E)
 
Ser(mfcoefs(mf,20),q)
 
\\ or just the series
 
Ser(ellan(E,20),q)*q
 
magma: ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 5598720
comment: Modular degree
 
sage: E.modular_degree()
 
gp: ellmoddegree(E)
 
magma: ModularDegree(E);
 
$ \Gamma_0(N) $-optimal: no
Manin constant: 1
comment: Manin constant
 
magma: ManinConstant(E);
 

Local data

This elliptic curve is not semistable. There are 4 primes of bad reduction:

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $1$ $I_0^{*}$ Additive -1 4 8 0
$5$ $1$ $I_{9}$ Non-split multiplicative 1 1 9 9
$7$ $3$ $IV$ Additive 1 2 4 0
$11$ $2$ $I_0^{*}$ Additive -1 2 6 0

comment: Local data
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$3$ 3B 9.12.0.2

comment: mod p Galois image
 
sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

gens = [[1, 18, 12, 217], [8810, 8811, 11979, 5048], [1, 18, 0, 1], [6931, 10098, 0, 8471], [5050, 5049, 3267, 8812], [10, 9, 81, 73], [13, 12, 13796, 13801], [13843, 18, 13842, 19], [1, 0, 18, 1], [11339, 0, 0, 13859], [12607, 10098, 11880, 463]]
 
GL(2,Integers(13860)).subgroup(gens)
 
Gens := [[1, 18, 12, 217], [8810, 8811, 11979, 5048], [1, 18, 0, 1], [6931, 10098, 0, 8471], [5050, 5049, 3267, 8812], [10, 9, 81, 73], [13, 12, 13796, 13801], [13843, 18, 13842, 19], [1, 0, 18, 1], [11339, 0, 0, 13859], [12607, 10098, 11880, 463]];
 
sub<GL(2,Integers(13860))|Gens>;
 

The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 13860 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \), index $144$, genus $2$, and generators

$\left(\begin{array}{rr} 1 & 18 \\ 12 & 217 \end{array}\right),\left(\begin{array}{rr} 8810 & 8811 \\ 11979 & 5048 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 6931 & 10098 \\ 0 & 8471 \end{array}\right),\left(\begin{array}{rr} 5050 & 5049 \\ 3267 & 8812 \end{array}\right),\left(\begin{array}{rr} 10 & 9 \\ 81 & 73 \end{array}\right),\left(\begin{array}{rr} 13 & 12 \\ 13796 & 13801 \end{array}\right),\left(\begin{array}{rr} 13843 & 18 \\ 13842 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 18 & 1 \end{array}\right),\left(\begin{array}{rr} 11339 & 0 \\ 0 & 13859 \end{array}\right),\left(\begin{array}{rr} 12607 & 10098 \\ 11880 & 463 \end{array}\right)$.

Input positive integer $m$ to see the generators of the reduction of $H$ to $\mathrm{GL}_2(\Z/m\Z)$:

The torsion field $K:=\Q(E[13860])$ is a degree-$33108590592000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/13860\Z)$.

Isogenies

gp: ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 3.
Its isogeny class 474320.cl consists of 2 curves linked by isogenies of degree 3.

Twists

The minimal quadratic twist of this elliptic curve is 980.g2, its twist by $44$.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

$p$-adic regulators

$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.