Show commands for:
SageMath
sage: E = EllipticCurve("n1")
sage: E.isogeny_class()
Elliptic curves in class 47432.n
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
47432.n1 | 47432g4 | [0, 0, 0, -1772771, 908500670] | [2] | 491520 | |
47432.n2 | 47432g3 | [0, 0, 0, -349811, -63001554] | [2] | 491520 | |
47432.n3 | 47432g2 | [0, 0, 0, -112651, 13695990] | [2, 2] | 245760 | |
47432.n4 | 47432g1 | [0, 0, 0, 5929, 913066] | [2] | 122880 | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 47432.n have rank \(1\).
Complex multiplication
The elliptic curves in class 47432.n do not have complex multiplication.Modular form 47432.2.a.n
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.