# Properties

 Label 471510.ep6 Conductor $471510$ Discriminant $-1.608\times 10^{18}$ j-invariant $$\frac{23862997439}{457113600}$$ CM no Rank $1$ Torsion structure $$\Z/{2}\Z$$

# Related objects

Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, -1, 1, 91228, 60067271]) # or

sage: E = EllipticCurve("471510.ep6")

gp: E = ellinit([1, -1, 1, 91228, 60067271]) \\ or

gp: E = ellinit("471510.ep6")

magma: E := EllipticCurve([1, -1, 1, 91228, 60067271]); // or

magma: E := EllipticCurve("471510.ep6");

$$y^2+xy+y=x^3-x^2+91228x+60067271$$

## Mordell-Weil group structure

$$\Z\times \Z/{2}\Z$$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $$P$$ = $$\left(261, 9949\right)$$ $$\hat{h}(P)$$ ≈ $2.0618150581725237173922371819$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(-315, 157\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-315, 157\right)$$, $$\left(261, 9949\right)$$, $$\left(261, -10211\right)$$, $$\left(361, 11649\right)$$, $$\left(361, -12011\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$471510$$ = $$2 \cdot 3^{2} \cdot 5 \cdot 13^{2} \cdot 31$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$-1608465628068249600$$ = $$-1 \cdot 2^{16} \cdot 3^{8} \cdot 5^{2} \cdot 13^{6} \cdot 31$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{23862997439}{457113600}$$ = $$2^{-16} \cdot 3^{-2} \cdot 5^{-2} \cdot 31^{-1} \cdot 2879^{3}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $$1$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$2.0618150581725237173922371819$$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $$0.19923148830785968059618642102$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$128$$  = $$2^{4}\cdot2\cdot2\cdot2\cdot1$$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $$2$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

## Modular invariants

Modular form 471510.2.a.ep

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + q^{2} + q^{4} + q^{5} + q^{8} + q^{10} - 4q^{11} + q^{16} - 2q^{17} - 4q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 7864320 $$\Gamma_0(N)$$-optimal: unknown* (one of 4 curves in this isogeny class which might be optimal) Manin constant: 1 (conditional*)
* The optimal curve in each isogeny class has not been determined in all cases for conductors over 400000. The Manin constant is correct provided that this curve is optimal.

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L'(E,1)$$ ≈ $$13.144911444968581958039922245036691982$$

## Local data

This elliptic curve is semistable. There are 5 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$16$$ $$I_{16}$$ Split multiplicative -1 1 16 16
$$3$$ $$2$$ $$I_2^{*}$$ Additive -1 2 8 2
$$5$$ $$2$$ $$I_{2}$$ Split multiplicative -1 1 2 2
$$13$$ $$2$$ $$I_0^{*}$$ Additive 1 2 6 0
$$31$$ $$1$$ $$I_{1}$$ Split multiplicative -1 1 1 1

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X120.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^4\Z_2)$ generated by $\left(\begin{array}{rr} 3 & 3 \\ 0 & 3 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 8 & 3 \end{array}\right),\left(\begin{array}{rr} 7 & 0 \\ 0 & 7 \end{array}\right),\left(\begin{array}{rr} 5 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 0 \\ 0 & 3 \end{array}\right)$ and has index 24.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ B

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

$$p$$-adic regulators are not yet computed for curves that are not $$\Gamma_0$$-optimal.

No Iwasawa invariant data is available for this curve.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2, 4 and 8.
Its isogeny class 471510.ep consists of 6 curves linked by isogenies of degrees dividing 8.