Properties

Label 47096.c
Number of curves $2$
Conductor $47096$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("c1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 47096.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
47096.c1 47096k2 \([0, 1, 0, -30081168, 63490179616]\) \(2471097448795250/98942809\) \(120531948008342915072\) \([2]\) \(2580480\) \(2.9361\)  
47096.c2 47096k1 \([0, 1, 0, -1789928, 1091020672]\) \(-1041220466500/242597383\) \(-147765842966496197632\) \([2]\) \(1290240\) \(2.5896\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 47096.c have rank \(1\).

Complex multiplication

The elliptic curves in class 47096.c do not have complex multiplication.

Modular form 47096.2.a.c

sage: E.q_eigenform(10)
 
\(q - 2q^{3} + q^{7} + q^{9} + 4q^{13} - 2q^{17} - 6q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.