Properties

Label 47040bm
Number of curves $6$
Conductor $47040$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("47040.dn1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 47040bm

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
47040.dn4 47040bm1 [0, -1, 0, -34365, -2440563] [2] 98304 \(\Gamma_0(N)\)-optimal
47040.dn3 47040bm2 [0, -1, 0, -35345, -2292975] [2, 2] 196608  
47040.dn5 47040bm3 [0, -1, 0, 46975, -11463423] [2] 393216  
47040.dn2 47040bm4 [0, -1, 0, -133345, 16307425] [2, 2] 393216  
47040.dn6 47040bm5 [0, -1, 0, 219455, 87643585] [2] 786432  
47040.dn1 47040bm6 [0, -1, 0, -2054145, 1133828865] [2] 786432  

Rank

sage: E.rank()
 

The elliptic curves in class 47040bm have rank \(1\).

Modular form 47040.2.a.dn

sage: E.q_eigenform(10)
 
\( q - q^{3} + q^{5} + q^{9} + 4q^{11} - 2q^{13} - q^{15} - 2q^{17} - 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 8 & 8 \\ 4 & 2 & 4 & 1 & 2 & 2 \\ 8 & 4 & 8 & 2 & 1 & 4 \\ 8 & 4 & 8 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.