Properties

Label 47040.gv
Number of curves $2$
Conductor $47040$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("47040.gv1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 47040.gv

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
47040.gv1 47040gv1 [0, 1, 0, -47105, -1519617] [2] 258048 \(\Gamma_0(N)\)-optimal
47040.gv2 47040gv2 [0, 1, 0, 172415, -11485825] [2] 516096  

Rank

sage: E.rank()
 

The elliptic curves in class 47040.gv have rank \(1\).

Modular form 47040.2.a.gv

sage: E.q_eigenform(10)
 
\( q + q^{3} + q^{5} + q^{9} + 2q^{11} + 2q^{13} + q^{15} + 4q^{17} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.