Properties

Label 47040.ce
Number of curves 8
Conductor 47040
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("47040.ce1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 47040.ce

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
47040.ce1 47040fl8 [0, -1, 0, -6023628865, -179941184998175] [2] 18874368  
47040.ce2 47040fl6 [0, -1, 0, -376476865, -2811485935775] [2, 2] 9437184  
47040.ce3 47040fl7 [0, -1, 0, -374124865, -2848350713375] [2] 18874368  
47040.ce4 47040fl4 [0, -1, 0, -47259585, 125031134817] [2] 4718592  
47040.ce5 47040fl3 [0, -1, 0, -23676865, -43346575775] [2, 2] 4718592  
47040.ce6 47040fl2 [0, -1, 0, -3355585, 1388690017] [2, 2] 2359296  
47040.ce7 47040fl1 [0, -1, 0, 658495, 154761825] [2] 1179648 \(\Gamma_0(N)\)-optimal
47040.ce8 47040fl5 [0, -1, 0, 3982655, -138589366943] [2] 9437184  

Rank

sage: E.rank()
 

The elliptic curves in class 47040.ce have rank \(0\).

Modular form 47040.2.a.ce

sage: E.q_eigenform(10)
 
\( q - q^{3} + q^{5} + q^{9} - 4q^{11} - 2q^{13} - q^{15} - 2q^{17} - 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 16 & 4 & 8 & 16 & 8 \\ 2 & 1 & 2 & 8 & 2 & 4 & 8 & 4 \\ 4 & 2 & 1 & 16 & 4 & 8 & 16 & 8 \\ 16 & 8 & 16 & 1 & 4 & 2 & 4 & 8 \\ 4 & 2 & 4 & 4 & 1 & 2 & 4 & 2 \\ 8 & 4 & 8 & 2 & 2 & 1 & 2 & 4 \\ 16 & 8 & 16 & 4 & 4 & 2 & 1 & 8 \\ 8 & 4 & 8 & 8 & 2 & 4 & 8 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.