Minimal Weierstrass equation
\(y^2+xy=x^3-x^2-96399x-2864295\)
Mordell-Weil group structure
\(\Z\times \Z/{2}\Z \times \Z/{2}\Z\)
Infinite order Mordell-Weil generator and height
\(P\) | = | \(\left(-159, 2982\right)\) ![]() |
\(\hat{h}(P)\) | ≈ | $1.1384058885660341890258037788$ |
Torsion generators
\( \left(-294, 147\right) \), \( \left(-30, 15\right) \)
Integral points
\( \left(-294, 147\right) \), \( \left(-159, 2982\right) \), \( \left(-159, -2823\right) \), \( \left(-129, 2787\right) \), \( \left(-129, -2658\right) \), \( \left(-30, 15\right) \), \( \left(331, 1022\right) \), \( \left(331, -1353\right) \), \( \left(696, 15987\right) \), \( \left(696, -16683\right) \), \( \left(916, 25557\right) \), \( \left(916, -26473\right) \), \( \left(35445, 6655125\right) \), \( \left(35445, -6690570\right) \)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 468270 \) | = | \(2 \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 43\) |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | \(53728296180322500 \) | = | \(2^{2} \cdot 3^{8} \cdot 5^{4} \cdot 11^{6} \cdot 43^{2} \) |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( \frac{76711450249}{41602500} \) | = | \(2^{-2} \cdot 3^{-2} \cdot 5^{-4} \cdot 7^{3} \cdot 43^{-2} \cdot 607^{3}\) |
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ | ||
Faltings height: | \(1.9011698513779527540067172252\dots\) | ||
Stable Faltings height: | \(0.15291607064471263627812281776\dots\) |
BSD invariants
sage: E.rank()
magma: Rank(E);
|
|||
Analytic rank: | \(1\) | ||
sage: E.regulator()
magma: Regulator(E);
|
|||
Regulator: | \(1.1384058885660341890258037788\dots\) | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
|
|||
Real period: | \(0.28888484015132798951419476365\dots\) | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
|
|||
Tamagawa product: | \( 256 \) = \( 2\cdot2^{2}\cdot2^{2}\cdot2^{2}\cdot2 \) | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
|
|||
Torsion order: | \(4\) | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
|||
Analytic order of Ш: | \(1\) (exact) |
Modular invariants
Modular form 468270.2.a.bf

For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 4423680 | ||
\( \Gamma_0(N) \)-optimal: | not computed* (one of 3 curves in this isogeny class which might be optimal) | ||
Manin constant: | 1 (conditional*) |
Special L-value
\( L'(E,1) \) ≈ \( 5.2618912503316686479850795976225445037 \)
Local data
This elliptic curve is not semistable. There are 5 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(2\) | \(2\) | \(I_{2}\) | Non-split multiplicative | 1 | 1 | 2 | 2 |
\(3\) | \(4\) | \(I_2^{*}\) | Additive | -1 | 2 | 8 | 2 |
\(5\) | \(4\) | \(I_{4}\) | Split multiplicative | -1 | 1 | 4 | 4 |
\(11\) | \(4\) | \(I_0^{*}\) | Additive | -1 | 2 | 6 | 0 |
\(43\) | \(2\) | \(I_{2}\) | Split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X8.
This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^1\Z_2)$ generated by $$ and has index 6.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.
prime | Image of Galois representation |
---|---|
\(2\) | Cs |
$p$-adic data
$p$-adic regulators
\(p\)-adic regulators are not yet computed for curves that are not \(\Gamma_0\)-optimal.
No Iwasawa invariant data is available for this curve.
Isogenies
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2.
Its isogeny class 468270bf
consists of 2 curves linked by isogenies of
degrees dividing 4.