Show commands for:
SageMath
sage: E = EllipticCurve("bf1")
sage: E.isogeny_class()
Elliptic curves in class 468270bf
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
468270.bf3 | 468270bf1 | [1, -1, 0, -74619, -7817067] | [2] | 2211840 | \(\Gamma_0(N)\)-optimal* |
468270.bf2 | 468270bf2 | [1, -1, 0, -96399, -2864295] | [2, 2] | 4423680 | \(\Gamma_0(N)\)-optimal* |
468270.bf1 | 468270bf3 | [1, -1, 0, -913149, 333800055] | [2] | 8847360 | \(\Gamma_0(N)\)-optimal* |
468270.bf4 | 468270bf4 | [1, -1, 0, 371871, -22812597] | [2] | 8847360 |
Rank
sage: E.rank()
The elliptic curves in class 468270bf have rank \(1\).
Complex multiplication
The elliptic curves in class 468270bf do not have complex multiplication.Modular form 468270.2.a.bf
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.