Show commands for:
SageMath
sage: E = EllipticCurve("eb1")
sage: E.isogeny_class()
Elliptic curves in class 468270.eb
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
468270.eb1 | 468270eb2 | [1, -1, 1, -180530087, -933578487201] | [2] | 103219200 | \(\Gamma_0(N)\)-optimal* |
468270.eb2 | 468270eb1 | [1, -1, 1, -11168807, -14895159969] | [2] | 51609600 | \(\Gamma_0(N)\)-optimal* |
Rank
sage: E.rank()
The elliptic curves in class 468270.eb have rank \(0\).
Complex multiplication
The elliptic curves in class 468270.eb do not have complex multiplication.Modular form 468270.2.a.eb
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.