# Properties

 Label 46800.eo Number of curves $2$ Conductor $46800$ CM no Rank $0$ Graph

# Related objects

Show commands: SageMath
sage: E = EllipticCurve("eo1")

sage: E.isogeny_class()

## Elliptic curves in class 46800.eo

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
46800.eo1 46800dz2 $$[0, 0, 0, -165675, -23251750]$$ $$10779215329/1232010$$ $$57480658560000000$$ $$[2]$$ $$442368$$ $$1.9481$$
46800.eo2 46800dz1 $$[0, 0, 0, 14325, -1831750]$$ $$6967871/35100$$ $$-1637625600000000$$ $$[2]$$ $$221184$$ $$1.6016$$ $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 46800.eo have rank $$0$$.

## Complex multiplication

The elliptic curves in class 46800.eo do not have complex multiplication.

## Modular form 46800.2.a.eo

sage: E.q_eigenform(10)

$$q + 2q^{7} + 4q^{11} + q^{13} + 8q^{17} + 6q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.