Learn more

Refine search


Results (1-50 of 291 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
46800.a1 46800.a \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $3.663660726$ $[0, 0, 0, -40789875, -100271308750]$ \(y^2=x^3-40789875x-100271308750\) 3.4.0.a.1, 12.8.0-3.a.1.1, 52.2.0.a.1, 78.8.0.?, 156.16.0.? $[(7375, 5850)]$
46800.a2 46800.a \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $10.99098217$ $[0, 0, 0, -469875, -156748750]$ \(y^2=x^3-469875x-156748750\) 3.4.0.a.1, 12.8.0-3.a.1.2, 52.2.0.a.1, 78.8.0.?, 156.16.0.? $[(235231/17, 1069254/17)]$
46800.b1 46800.b \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -77700, -8336500]$ \(y^2=x^3-77700x-8336500\) 390.2.0.? $[ ]$
46800.c1 46800.c \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $3.337124525$ $[0, 0, 0, 10500, -7062500]$ \(y^2=x^3+10500x-7062500\) 390.2.0.? $[(1625/2, 64125/2)]$
46800.d1 46800.d \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $2.401011897$ $[0, 0, 0, -747075, -238562750]$ \(y^2=x^3-747075x-238562750\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 12.24.0.f.1, $\ldots$ $[(-505, 3150)]$
46800.d2 46800.d \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $0.800337299$ $[0, 0, 0, -117075, 15327250]$ \(y^2=x^3-117075x+15327250\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 12.24.0.f.1, $\ldots$ $[(95, 2250)]$
46800.d3 46800.d \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.600674598$ $[0, 0, 0, -45075, 33975250]$ \(y^2=x^3-45075x+33975250\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.48.0.b.1, $\ldots$ $[(255, 6250)]$
46800.d4 46800.d \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $4.802023795$ $[0, 0, 0, 404925, -907874750]$ \(y^2=x^3+404925x-907874750\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.48.0.b.2, $\ldots$ $[(2055, 92750)]$
46800.e1 46800.e \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $2$ $\Z/2\Z$ $3.200083857$ $[0, 0, 0, -12682875, 17329806250]$ \(y^2=x^3-12682875x+17329806250\) 2.3.0.a.1, 40.6.0.b.1, 104.6.0.?, 260.6.0.?, 520.12.0.? $[(525, 104000), (2189, 7488)]$
46800.e2 46800.e \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $2$ $\Z/2\Z$ $12.80033543$ $[0, 0, 0, -1162875, -7793750]$ \(y^2=x^3-1162875x-7793750\) 2.3.0.a.1, 40.6.0.c.1, 104.6.0.?, 130.6.0.?, 520.12.0.? $[(-51, 7168), (-825, 19750)]$
46800.f1 46800.f \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $8.047185148$ $[0, 0, 0, -7680, -258320]$ \(y^2=x^3-7680x-258320\) 3.4.0.a.1, 26.2.0.a.1, 60.8.0-3.a.1.2, 78.8.0.?, 780.16.0.? $[(-6111/11, 36023/11)]$
46800.f2 46800.f \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $2.682395049$ $[0, 0, 0, -480, 3760]$ \(y^2=x^3-480x+3760\) 3.4.0.a.1, 26.2.0.a.1, 60.8.0-3.a.1.1, 78.8.0.?, 780.16.0.? $[(9, 13)]$
46800.g1 46800.g \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.486719259$ $[0, 0, 0, -13575, 553750]$ \(y^2=x^3-13575x+553750\) 2.3.0.a.1, 12.6.0.c.1, 26.6.0.b.1, 156.12.0.? $[(-31, 972)]$
46800.g2 46800.g \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $2.973438519$ $[0, 0, 0, 1050, 41875]$ \(y^2=x^3+1050x+41875\) 2.3.0.a.1, 6.6.0.a.1, 52.6.0.c.1, 156.12.0.? $[(11, 234)]$
46800.h1 46800.h \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $2.152008891$ $[0, 0, 0, -750, -3625]$ \(y^2=x^3-750x-3625\) 2.3.0.a.1, 12.6.0.c.1, 26.6.0.b.1, 156.12.0.? $[(31, 54)]$
46800.h2 46800.h \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.076004445$ $[0, 0, 0, 2625, -27250]$ \(y^2=x^3+2625x-27250\) 2.3.0.a.1, 6.6.0.a.1, 52.6.0.c.1, 156.12.0.? $[(49, 468)]$
46800.i1 46800.i \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $2$ $\Z/2\Z$ $0.459866323$ $[0, 0, 0, -2115, 36450]$ \(y^2=x^3-2115x+36450\) 2.3.0.a.1, 40.6.0.b.1, 104.6.0.?, 260.6.0.?, 520.12.0.? $[(69, 468), (15, 90)]$
46800.i2 46800.i \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $2$ $\Z/2\Z$ $1.839465294$ $[0, 0, 0, -315, -1350]$ \(y^2=x^3-315x-1350\) 2.3.0.a.1, 40.6.0.c.1, 104.6.0.?, 130.6.0.?, 520.12.0.? $[(21, 36), (25, 80)]$
46800.j1 46800.j \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -3027675, -2027461750]$ \(y^2=x^3-3027675x-2027461750\) 2.3.0.a.1, 4.6.0.b.1, 120.12.0.?, 130.6.0.?, 260.24.0.?, $\ldots$ $[ ]$
46800.j2 46800.j \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -2739675, -2428645750]$ \(y^2=x^3-2739675x-2428645750\) 2.3.0.a.1, 4.6.0.a.1, 120.12.0.?, 260.12.0.?, 312.12.0.?, $\ldots$ $[ ]$
46800.k1 46800.k \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -1809675, -561255750]$ \(y^2=x^3-1809675x-561255750\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 24.24.0-6.a.1.5, 60.24.0-6.a.1.2, $\ldots$ $[ ]$
46800.k2 46800.k \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -1599675, -778745750]$ \(y^2=x^3-1599675x-778745750\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 24.24.0-6.a.1.13, 60.24.0-6.a.1.4, $\ldots$ $[ ]$
46800.k3 46800.k \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -99675, -12245750]$ \(y^2=x^3-99675x-12245750\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 24.24.0-6.a.1.2, 60.24.0-6.a.1.4, $\ldots$ $[ ]$
46800.k4 46800.k \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 350325, -62295750]$ \(y^2=x^3+350325x-62295750\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 24.24.0-6.a.1.10, 60.24.0-6.a.1.2, $\ldots$ $[ ]$
46800.l1 46800.l \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $6.003232674$ $[0, 0, 0, -484275, -129734030]$ \(y^2=x^3-484275x-129734030\) 3.4.0.a.1, 60.8.0-3.a.1.2, 312.8.0.?, 1560.16.0.? $[(2366, 109404)]$
46800.l2 46800.l \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $2.001077558$ $[0, 0, 0, 1725, -594110]$ \(y^2=x^3+1725x-594110\) 3.4.0.a.1, 60.8.0-3.a.1.1, 312.8.0.?, 1560.16.0.? $[(206, 2916)]$
46800.m1 46800.m \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -14397075, 21026135250]$ \(y^2=x^3-14397075x+21026135250\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 24.24.0-6.a.1.5, 60.24.0-6.a.1.2, $\ldots$ $[ ]$
46800.m2 46800.m \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -897075, 330635250]$ \(y^2=x^3-897075x+330635250\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 24.24.0-6.a.1.10, 60.24.0-6.a.1.2, $\ldots$ $[ ]$
46800.m3 46800.m \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -201075, 20787250]$ \(y^2=x^3-201075x+20787250\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 24.24.0-6.a.1.13, 60.24.0-6.a.1.4, $\ldots$ $[ ]$
46800.m4 46800.m \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 38925, 2307250]$ \(y^2=x^3+38925x+2307250\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 24.24.0-6.a.1.2, 60.24.0-6.a.1.4, $\ldots$ $[ ]$
46800.n1 46800.n \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 43125, 38056250]$ \(y^2=x^3+43125x+38056250\) 8.2.0.a.1 $[ ]$
46800.o1 46800.o \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $4.013252837$ $[0, 0, 0, -1310115, -531840350]$ \(y^2=x^3-1310115x-531840350\) 2.3.0.a.1, 40.6.0.b.1, 104.6.0.?, 260.6.0.?, 520.12.0.? $[(-505, 990)]$
46800.o2 46800.o \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $8.026505675$ $[0, 0, 0, -1281315, -558249950]$ \(y^2=x^3-1281315x-558249950\) 2.3.0.a.1, 40.6.0.c.1, 104.6.0.?, 130.6.0.?, 520.12.0.? $[(76785, 21274880)]$
46800.p1 46800.p \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -3675, 18250]$ \(y^2=x^3-3675x+18250\) 2.3.0.a.1, 4.6.0.b.1, 120.12.0.?, 130.6.0.?, 260.24.0.?, $\ldots$ $[ ]$
46800.p2 46800.p \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 14325, 144250]$ \(y^2=x^3+14325x+144250\) 2.3.0.a.1, 4.6.0.a.1, 120.12.0.?, 260.12.0.?, 312.12.0.?, $\ldots$ $[ ]$
46800.q1 46800.q \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -372675, -87236750]$ \(y^2=x^3-372675x-87236750\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0.h.1, 20.12.0-4.c.1.1, 60.24.0-12.h.1.1, $\ldots$ $[ ]$
46800.q2 46800.q \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -35175, 175750]$ \(y^2=x^3-35175x+175750\) 2.6.0.a.1, 12.12.0.a.1, 20.12.0-2.a.1.1, 52.12.0.b.1, 60.24.0-12.a.1.2, $\ldots$ $[ ]$
46800.q3 46800.q \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -25050, 1522375]$ \(y^2=x^3-25050x+1522375\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 26.6.0.b.1, 40.12.0-4.c.1.5, $\ldots$ $[ ]$
46800.q4 46800.q \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 140325, 1404250]$ \(y^2=x^3+140325x+1404250\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 24.12.0.ba.1, 78.6.0.?, $\ldots$ $[ ]$
46800.r1 46800.r \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $2$ $\mathsf{trivial}$ $0.439999051$ $[0, 0, 0, 7125, 396250]$ \(y^2=x^3+7125x+396250\) 312.2.0.? $[(125, 1800), (29, 792)]$
46800.s1 46800.s \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $3.112938607$ $[0, 0, 0, -250275, -48190750]$ \(y^2=x^3-250275x-48190750\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 26.6.0.b.1, 40.12.0-4.c.1.5, $\ldots$ $[(-289, 34)]$
46800.s2 46800.s \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $3.112938607$ $[0, 0, 0, -70275, 6493250]$ \(y^2=x^3-70275x+6493250\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0.h.1, 20.12.0-4.c.1.2, 60.24.0-12.h.1.2, $\ldots$ $[(215, 1150)]$
46800.s3 46800.s \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.556469303$ $[0, 0, 0, -16275, -688750]$ \(y^2=x^3-16275x-688750\) 2.6.0.a.1, 12.12.0.a.1, 20.12.0-2.a.1.1, 52.12.0.b.1, 60.24.0-12.a.1.1, $\ldots$ $[(-89, 234)]$
46800.s4 46800.s \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $0.778234651$ $[0, 0, 0, 1725, -58750]$ \(y^2=x^3+1725x-58750\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 24.12.0.ba.1, 78.6.0.?, $\ldots$ $[(55, 450)]$
46800.t1 46800.t \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $1.651685109$ $[0, 0, 0, -1200, -146000]$ \(y^2=x^3-1200x-146000\) 390.2.0.? $[(65, 225)]$
46800.u1 46800.u \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $4.553872123$ $[0, 0, 0, 41700, -85094500]$ \(y^2=x^3+41700x-85094500\) 390.2.0.? $[(8665/4, 628125/4)]$
46800.v1 46800.v \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -32818501875, -2288369979868750]$ \(y^2=x^3-32818501875x-2288369979868750\) 5.12.0.a.2, 52.2.0.a.1, 60.24.0-5.a.2.2, 260.24.1.?, 390.24.0.?, $\ldots$ $[ ]$
46800.v2 46800.v \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -51163635, -154318995790]$ \(y^2=x^3-51163635x-154318995790\) 5.12.0.a.1, 52.2.0.a.1, 60.24.0-5.a.1.2, 260.24.1.?, 390.24.0.?, $\ldots$ $[ ]$
46800.w1 46800.w \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $1.385279043$ $[0, 0, 0, -23700, 2153500]$ \(y^2=x^3-23700x+2153500\) 390.2.0.? $[(185, 2025)]$
46800.x1 46800.x \( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -163875, -26558750]$ \(y^2=x^3-163875x-26558750\) 52.2.0.a.1 $[ ]$
Next   displayed columns for results