## Results (1-50 of 55 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Weierstrass equation
4680.a1 4680.a $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $1$ $\mathsf{trivial}$ $$y^2=x^3-3108x+66692$$
4680.b1 4680.b $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $1$ $\mathsf{trivial}$ $$y^2=x^3+15012x-18380412$$
4680.c1 4680.c $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $1$ $\mathsf{trivial}$ $$y^2=x^3-948x-17228$$
4680.d1 4680.d $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3-1803x-29018$$
4680.d2 4680.d $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3-3x-1298$$
4680.e1 4680.e $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3-183x+938$$
4680.e2 4680.e $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3-3x+2702$$
4680.f1 4680.f $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3-5643x+162918$$
4680.f2 4680.f $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3-243x+4158$$
4680.g1 4680.g $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3-21902403x-39453520498$$
4680.g2 4680.g $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3-4811043x+3391121342$$
4680.g3 4680.g $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $1$ $\Z/2\Z\oplus\Z/2\Z$ $$y^2=x^3-1399323x-587626522$$
4680.g4 4680.g $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $1$ $\Z/2\Z\oplus\Z/2\Z$ $$y^2=x^3-1368903x-616458598$$
4680.g5 4680.g $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $1$ $\Z/4\Z$ $$y^2=x^3-83658x-10080007$$
4680.g6 4680.g $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3+1525677x-2721121522$$
4680.h1 4680.h $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3-37803x-2794698$$
4680.h2 4680.h $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3-303x-117198$$
4680.i1 4680.i $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3-38523x+2039222$$
4680.i2 4680.i $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3+6477x+212222$$
4680.j1 4680.j $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $1$ $\mathsf{trivial}$ $$y^2=x^3-108x-972$$
4680.k1 4680.k $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3-74883x-7887202$$
4680.k2 4680.k $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3-6483x-19762$$
4680.k3 4680.k $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $1$ $\Z/2\Z\oplus\Z/2\Z$ $$y^2=x^3-4683x-123082$$
4680.k4 4680.k $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3-183x-3382$$
4680.l1 4680.l $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3-5054403x+4373739502$$
4680.l2 4680.l $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $0$ $\Z/2\Z\oplus\Z/2\Z$ $$y^2=x^3-315903x+68338402$$
4680.l3 4680.l $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3-301323x+74931478$$
4680.l4 4680.l $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3-20658x+963493$$
4680.m1 4680.m $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $1$ $\Z/4\Z$ $$y^2=x^3-14907x+697894$$
4680.m2 4680.m $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $1$ $\Z/2\Z\oplus\Z/2\Z$ $$y^2=x^3-1407x-1406$$
4680.m3 4680.m $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3-1002x-12179$$
4680.m4 4680.m $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3+5613x-11234$$
4680.n1 4680.n $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $1$ $\mathsf{trivial}$ $$y^2=x^3+1668x+680756$$
4680.o1 4680.o $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $1$ $\mathsf{trivial}$ $$y^2=x^3+87468x-6552236$$
4680.p1 4680.p $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3-52347x-4608394$$
4680.p2 4680.p $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3-27147x+1686566$$
4680.p3 4680.p $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $1$ $\Z/2\Z\oplus\Z/2\Z$ $$y^2=x^3-3747x-49714$$
4680.p4 4680.p $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $1$ $\Z/4\Z$ $$y^2=x^3+753x-5614$$
4680.q1 4680.q $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3-89067x+4870726$$
4680.q2 4680.q $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $0$ $\Z/2\Z\oplus\Z/2\Z$ $$y^2=x^3-44067x-3508274$$
4680.q3 4680.q $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3-43887x-3538766$$
4680.q4 4680.q $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3-1947x-9935786$$
4680.r1 4680.r $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3-627x-6034$$
4680.r2 4680.r $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $1$ $\Z/2\Z$ $$y^2=x^3-27x-154$$
4680.s1 4680.s $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3-69267x-6999874$$
4680.s2 4680.s $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3-64587x+6294134$$
4680.s3 4680.s $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $0$ $\Z/2\Z\oplus\Z/2\Z$ $$y^2=x^3-6087x-12166$$
4680.s4 4680.s $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $0$ $\Z/4\Z$ $$y^2=x^3+1518x-1519$$
4680.t1 4680.t $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $0$ $\Z/2\Z$ $$y^2=x^3-5067x+138726$$
4680.t2 4680.t $$2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ $0$ $\Z/2\Z\oplus\Z/2\Z$ $$y^2=x^3-387x+1134$$
Next   displayed columns for results