Properties

Label 466752cb
Number of curves $2$
Conductor $466752$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("cb1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 466752cb

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
466752.cb1 466752cb1 \([0, -1, 0, -2525281, 1323593953]\) \(6793805286030262681/1048227429629952\) \(274786531312914137088\) \([2]\) \(28901376\) \(2.6453\) \(\Gamma_0(N)\)-optimal
466752.cb2 466752cb2 \([0, -1, 0, 4396959, 7297487073]\) \(35862531227445945959/108547797844556928\) \(-28455153918163531333632\) \([2]\) \(57802752\) \(2.9919\)  

Rank

sage: E.rank()
 

The elliptic curves in class 466752cb have rank \(0\).

Complex multiplication

The elliptic curves in class 466752cb do not have complex multiplication.

Modular form 466752.2.a.cb

sage: E.q_eigenform(10)
 
\(q - q^{3} + 4 q^{5} - 2 q^{7} + q^{9} - q^{11} + q^{13} - 4 q^{15} - q^{17} + 4 q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.