Properties

Label 466752bu3
Conductor $466752$
Discriminant $2.327\times 10^{29}$
j-invariant \( \frac{1748094148784980747354970849498497}{887694600425282263291392} \)
CM no
Rank $1$
Torsion structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([0, -1, 0, -160617801217, 24776466871606177])
 
gp: E = ellinit([0, -1, 0, -160617801217, 24776466871606177])
 
magma: E := EllipticCurve([0, -1, 0, -160617801217, 24776466871606177]);
 

\(y^2=x^3-x^2-160617801217x+24776466871606177\)  Toggle raw display

Mordell-Weil group structure

$\Z\times \Z/{2}\Z$

Infinite order Mordell-Weil generator and height

sage: E.gens()
 
magma: Generators(E);
 

$P$ =  \(\left(\frac{19169448037609204319773}{83463516812081961}, \frac{34244818211102783378277137772032}{24112654326137905748421291}\right)\)  Toggle raw display
$\hat{h}(P)$ ≈  $45.320959575637399420912181086$

Torsion generators

sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 

\( \left(231511, 0\right) \)  Toggle raw display

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

\( \left(231511, 0\right) \)  Toggle raw display

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 466752 \)  =  $2^{6} \cdot 3 \cdot 11 \cdot 13 \cdot 17$
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: $232703813333885193628258664448 $  =  $2^{27} \cdot 3^{4} \cdot 11 \cdot 13^{12} \cdot 17^{4} $
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( \frac{1748094148784980747354970849498497}{887694600425282263291392} \)  =  $2^{-9} \cdot 3^{-4} \cdot 11^{-1} \cdot 13^{-12} \cdot 17^{-4} \cdot 109^{3} \cdot 1105168357^{3}$
Endomorphism ring: $\Z$
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: $4.9677181225501196579932679549\dots$
Stable Faltings height: $3.9279973517102016938674197727\dots$

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Analytic rank: $1$
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: $45.320959575637399420912181086\dots$
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: $0.025686427481966191336453166968\dots$
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: $ 32 $  = $ 2^{2}\cdot2\cdot1\cdot2\cdot2 $
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: $2$
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: $1$ (exact)
sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Special value: $ L'(E,1) $ ≈ $ 9.3130683324218505046273375053240205848 $

Modular invariants

Modular form 466752.2.a.bu

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q - q^{3} + 2q^{5} + q^{9} + q^{11} - q^{13} - 2q^{15} - q^{17} + 8q^{19} + O(q^{20}) \)  Toggle raw display

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 1815478272
$ \Gamma_0(N) $-optimal: not computed* (one of 3 curves in this isogeny class which might be optimal)
Manin constant: 1 (conditional*)
* The optimal curve in each isogeny class has not been determined in all cases for conductors over 400000. The Manin constant is correct provided that curve 466752bu1 is optimal.

Local data

This elliptic curve is not semistable. There are 5 primes of bad reduction:

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $4$ $I_{17}^{*}$ Additive -1 6 27 9
$3$ $2$ $I_{4}$ Non-split multiplicative 1 1 4 4
$11$ $1$ $I_{1}$ Split multiplicative -1 1 1 1
$13$ $2$ $I_{12}$ Non-split multiplicative 1 1 12 12
$17$ $2$ $I_{4}$ Non-split multiplicative 1 1 4 4

Galois representations

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 8.12.0.8

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]
 

$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.

No Iwasawa invariant data is available for this curve.

Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2 and 4.
Its isogeny class 466752bu consists of 3 curves linked by isogenies of degrees dividing 4.