Properties

Label 466752.b
Number of curves $2$
Conductor $466752$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("b1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 466752.b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
466752.b1 466752b1 \([0, -1, 0, -5985, -124959]\) \(90458382169/25788048\) \(6760182054912\) \([2]\) \(1228800\) \(1.1685\) \(\Gamma_0(N)\)-optimal
466752.b2 466752b2 \([0, -1, 0, 15775, -843039]\) \(1656015369191/2114999172\) \(-554434342944768\) \([2]\) \(2457600\) \(1.5150\)  

Rank

sage: E.rank()
 

The elliptic curves in class 466752.b have rank \(1\).

Complex multiplication

The elliptic curves in class 466752.b do not have complex multiplication.

Modular form 466752.2.a.b

sage: E.q_eigenform(10)
 
\(q - q^{3} - 4 q^{5} + q^{9} - q^{11} + q^{13} + 4 q^{15} + q^{17} - 2 q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.