Properties

Label 466578p
Number of curves $1$
Conductor $466578$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("p1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 466578p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
466578.p1 466578p1 \([1, -1, 0, 2121991884, -25248872331824]\) \(83228502970940543/69854999176704\) \(-886911480053805928235842008576\) \([]\) \(802897920\) \(4.4341\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 466578p1 has rank \(0\).

Complex multiplication

The elliptic curves in class 466578p do not have complex multiplication.

Modular form 466578.2.a.p

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - 3q^{5} - q^{8} + 3q^{10} + 4q^{11} + 3q^{13} + q^{16} + 4q^{17} + O(q^{20})\)  Toggle raw display