Show commands for:
SageMath
sage: E = EllipticCurve("bq1")
sage: E.isogeny_class()
Elliptic curves in class 465690.bq
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
465690.bq1 | 465690bq4 | [1, 1, 1, -302706, -63792231] | [2] | 5308416 | |
465690.bq2 | 465690bq2 | [1, 1, 1, -31956, 537969] | [2, 2] | 2654208 | |
465690.bq3 | 465690bq1 | [1, 1, 1, -24736, 1485233] | [2] | 1327104 | \(\Gamma_0(N)\)-optimal* |
465690.bq4 | 465690bq3 | [1, 1, 1, 123274, 4387673] | [2] | 5308416 |
Rank
sage: E.rank()
The elliptic curves in class 465690.bq have rank \(1\).
Complex multiplication
The elliptic curves in class 465690.bq do not have complex multiplication.Modular form 465690.2.a.bq
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.