# Properties

 Label 4650bp2 Conductor $4650$ Discriminant $-2.013\times 10^{16}$ j-invariant $$-\frac{2372030262025}{2061298872}$$ CM no Rank $0$ Torsion structure trivial

# Learn more

Show commands: Magma / Oscar / PariGP / SageMath

## Simplified equation

 $$y^2+xy=x^3-59388x-8815608$$ y^2+xy=x^3-59388x-8815608 (homogenize, simplify) $$y^2z+xyz=x^3-59388xz^2-8815608z^3$$ y^2z+xyz=x^3-59388xz^2-8815608z^3 (dehomogenize, simplify) $$y^2=x^3-76966875x-411070106250$$ y^2=x^3-76966875x-411070106250 (homogenize, minimize)

comment: Define the curve

sage: E = EllipticCurve([1, 0, 0, -59388, -8815608])

gp: E = ellinit([1, 0, 0, -59388, -8815608])

magma: E := EllipticCurve([1, 0, 0, -59388, -8815608]);

oscar: E = EllipticCurve([1, 0, 0, -59388, -8815608])

sage: E.short_weierstrass_model()

magma: WeierstrassModel(E);

oscar: short_weierstrass_model(E)

## Mordell-Weil group structure

trivial

magma: MordellWeilGroup(E);

## Integral points

None

comment: Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

## Invariants

 Conductor: $$4650$$ = $2 \cdot 3 \cdot 5^{2} \cdot 31$ comment: Conductor  sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E);  oscar: conductor(E) Discriminant: $-20129871796875000$ = $-1 \cdot 2^{3} \cdot 3^{2} \cdot 5^{10} \cdot 31^{5}$ comment: Discriminant  sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E);  oscar: discriminant(E) j-invariant: $$-\frac{2372030262025}{2061298872}$$ = $-1 \cdot 2^{-3} \cdot 3^{-2} \cdot 5^{2} \cdot 31^{-5} \cdot 4561^{3}$ comment: j-invariant  sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E);  oscar: j_invariant(E) Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) sage: E.has_cm()  magma: HasComplexMultiplication(E); Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $1.8257557020870219381076028616\dots$ gp: ellheight(E)  magma: FaltingsHeight(E);  oscar: faltings_height(E) Stable Faltings height: $0.48455744172527162594030341725\dots$ magma: StableFaltingsHeight(E);  oscar: stable_faltings_height(E)

## BSD invariants

 Analytic rank: $0$ sage: E.analytic_rank()  gp: ellanalyticrank(E)  magma: AnalyticRank(E); Regulator: $1$ comment: Regulator  sage: E.regulator()  G = E.gen \\ if available matdet(ellheightmatrix(E,G))  magma: Regulator(E); Real period: $0.14754067097342350743697019163\dots$ comment: Real Period  sage: E.period_lattice().omega()  gp: if(E.disc>0,2,1)*E.omega[1]  magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E); Tamagawa product: $30$  = $3\cdot2\cdot1\cdot5$ comment: Tamagawa numbers  sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E);  oscar: tamagawa_numbers(E) Torsion order: $1$ comment: Torsion order  sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E));  oscar: prod(torsion_structure(E)[1]) Analytic order of Ш: $1$ (exact) comment: Order of Sha  sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Special value: $L(E,1)$ ≈ $4.4262201292027052231091057488$ comment: Special L-value  r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: [r,L1r] = ellanalyticrank(E); L1r/r!  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

## BSD formula

$\displaystyle 4.426220129 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.147541 \cdot 1.000000 \cdot 30}{1^2} \approx 4.426220129$

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)

E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;

Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();

omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();

assert r == ar; print("anayltic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))

/* self-contained Magma code snippet for the BSD formula (checks rank, computes analyiic sha) */

E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;

sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);

reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);

assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);

## Modular invariants

$$q + q^{2} + q^{3} + q^{4} + q^{6} + 3 q^{7} + q^{8} + q^{9} - 3 q^{11} + q^{12} - q^{13} + 3 q^{14} + q^{16} - 2 q^{17} + q^{18} + O(q^{20})$$

comment: q-expansion of modular form

sage: E.q_eigenform(20)

\\ actual modular form, use for small N

[mf,F] = mffromell(E)

Ser(mfcoefs(mf,20),q)

\\ or just the series

Ser(ellan(E,20),q)*q

magma: ModularForm(E);

For more coefficients, see the Downloads section to the right.

Modular degree: 36000
comment: Modular degree

sage: E.modular_degree()

gp: ellmoddegree(E)

magma: ModularDegree(E);

$\Gamma_0(N)$-optimal: no
Manin constant: 1
comment: Manin constant

magma: ManinConstant(E);

## Local data

This elliptic curve is not semistable. There are 4 primes of bad reduction:

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $3$ $I_{3}$ Split multiplicative -1 1 3 3
$3$ $2$ $I_{2}$ Split multiplicative -1 1 2 2
$5$ $1$ $II^{*}$ Additive 1 2 10 0
$31$ $5$ $I_{5}$ Split multiplicative -1 1 5 5

comment: Local data

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]

## Galois representations

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$5$ 5B.1.2 5.24.0.3

comment: mod p Galois image

sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

gens = [[311, 10, 0, 1], [621, 10, 625, 51], [1231, 10, 1230, 11], [1, 0, 10, 1], [307, 610, 1220, 491], [561, 10, 325, 51], [6, 13, 1185, 1121], [1, 10, 0, 1]]

GL(2,Integers(1240)).subgroup(gens)

Gens := [[311, 10, 0, 1], [621, 10, 625, 51], [1231, 10, 1230, 11], [1, 0, 10, 1], [307, 610, 1220, 491], [561, 10, 325, 51], [6, 13, 1185, 1121], [1, 10, 0, 1]];

sub<GL(2,Integers(1240))|Gens>;

The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level $$1240 = 2^{3} \cdot 5 \cdot 31$$, index $48$, genus $1$, and generators

$\left(\begin{array}{rr} 311 & 10 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 621 & 10 \\ 625 & 51 \end{array}\right),\left(\begin{array}{rr} 1231 & 10 \\ 1230 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 10 & 1 \end{array}\right),\left(\begin{array}{rr} 307 & 610 \\ 1220 & 491 \end{array}\right),\left(\begin{array}{rr} 561 & 10 \\ 325 & 51 \end{array}\right),\left(\begin{array}{rr} 6 & 13 \\ 1185 & 1121 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 0 & 1 \end{array}\right)$.

The torsion field $K:=\Q(E[1240])$ is a degree-$13713408000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1240\Z)$.

## $p$-adic regulators

All $p$-adic regulators are identically $1$ since the rank is $0$.

## Iwasawa invariants

$p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 31 split split add split 3 3 - 1 0 0 - 0

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 7$ of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

gp: ellisomat(E)

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 5.
Its isogeny class 4650bp consists of 2 curves linked by isogenies of degree 5.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $3$ 3.1.6200.1 $$\Z/2\Z$$ Not in database $4$ $$\Q(\zeta_{5})$$ $$\Z/5\Z$$ Not in database $5$ 5.1.4050000.4 $$\Z/5\Z$$ Not in database $6$ 6.0.9533120000.1 $$\Z/2\Z \oplus \Z/2\Z$$ Not in database $8$ 8.2.2556233977921875.6 $$\Z/3\Z$$ Not in database $12$ deg 12 $$\Z/4\Z$$ Not in database $12$ deg 12 $$\Z/10\Z$$ Not in database $15$ 15.1.97374109674182400000000000000000.1 $$\Z/10\Z$$ Not in database $20$ 20.0.33630250781250000000000000000.3 $$\Z/5\Z \oplus \Z/5\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.