Show commands:
SageMath
E = EllipticCurve("bp1")
E.isogeny_class()
Elliptic curves in class 4650bp
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
4650.bu2 | 4650bp1 | \([1, 0, 0, -1428, 62352]\) | \(-12882119799145/59982446592\) | \(-1499561164800\) | \([5]\) | \(7200\) | \(1.0210\) | \(\Gamma_0(N)\)-optimal |
4650.bu1 | 4650bp2 | \([1, 0, 0, -59388, -8815608]\) | \(-2372030262025/2061298872\) | \(-20129871796875000\) | \([]\) | \(36000\) | \(1.8258\) |
Rank
sage: E.rank()
The elliptic curves in class 4650bp have rank \(0\).
Complex multiplication
The elliptic curves in class 4650bp do not have complex multiplication.Modular form 4650.2.a.bp
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.