# Properties

 Label 4650.x1 Conductor $4650$ Discriminant $4.982\times 10^{13}$ j-invariant $$\frac{1152829477932246539641}{3188367360}$$ CM no Rank $1$ Torsion structure $$\Z/{2}\Z$$

# Learn more

Show commands: Magma / Oscar / PariGP / SageMath

## Simplified equation

 $$y^2+xy+y=x^3+x^2-5461188x+4909955781$$ y^2+xy+y=x^3+x^2-5461188x+4909955781 (homogenize, simplify) $$y^2z+xyz+yz^2=x^3+x^2z-5461188xz^2+4909955781z^3$$ y^2z+xyz+yz^2=x^3+x^2z-5461188xz^2+4909955781z^3 (dehomogenize, simplify) $$y^2=x^3-7077699675x+229185062421750$$ y^2=x^3-7077699675x+229185062421750 (homogenize, minimize)

comment: Define the curve

sage: E = EllipticCurve([1, 1, 1, -5461188, 4909955781])

gp: E = ellinit([1, 1, 1, -5461188, 4909955781])

magma: E := EllipticCurve([1, 1, 1, -5461188, 4909955781]);

oscar: E = EllipticCurve([1, 1, 1, -5461188, 4909955781])

sage: E.short_weierstrass_model()

magma: WeierstrassModel(E);

oscar: short_weierstrass_model(E)

## Mordell-Weil group structure

$$\Z \oplus \Z/{2}\Z$$

magma: MordellWeilGroup(E);

### Infinite order Mordell-Weil generator and height

 $P$ = $$\left(1405, 2897\right)$$ (1405, 2897) $\hat{h}(P)$ ≈ $0.39612412703278941597770964800$

sage: E.gens()

magma: Generators(E);

gp: E.gen

## Torsion generators

$$\left(\frac{5395}{4}, -\frac{5399}{8}\right)$$

comment: Torsion subgroup

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

oscar: torsion_structure(E)

## Integral points

$$\left(-395, 83897\right)$$, $$\left(-395, -83503\right)$$, $$\left(969, 22517\right)$$, $$\left(969, -23487\right)$$, $$\left(1341, -175\right)$$, $$\left(1341, -1167\right)$$, $$\left(1349, -663\right)$$, $$\left(1349, -687\right)$$, $$\left(1405, 2897\right)$$, $$\left(1405, -4303\right)$$

comment: Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

## Invariants

 Conductor: $$4650$$ = $2 \cdot 3 \cdot 5^{2} \cdot 31$ comment: Conductor  sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E);  oscar: conductor(E) Discriminant: $49818240000000$ = $2^{13} \cdot 3^{4} \cdot 5^{7} \cdot 31^{2}$ comment: Discriminant  sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E);  oscar: discriminant(E) j-invariant: $$\frac{1152829477932246539641}{3188367360}$$ = $2^{-13} \cdot 3^{-4} \cdot 5^{-1} \cdot 17^{3} \cdot 31^{-2} \cdot 616793^{3}$ comment: j-invariant  sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E);  oscar: j_invariant(E) Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) sage: E.has_cm()  magma: HasComplexMultiplication(E); Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $2.2864422954146134653708761084\dots$ gp: ellheight(E)  magma: FaltingsHeight(E);  oscar: faltings_height(E) Stable Faltings height: $1.4817233391975632780704964418\dots$ magma: StableFaltingsHeight(E);  oscar: stable_faltings_height(E)

## BSD invariants

 Analytic rank: $1$ sage: E.analytic_rank()  gp: ellanalyticrank(E)  magma: AnalyticRank(E); Regulator: $0.39612412703278941597770964800\dots$ comment: Regulator  sage: E.regulator()  G = E.gen \\ if available matdet(ellheightmatrix(E,G))  magma: Regulator(E); Real period: $0.41831522806529736356304299586\dots$ comment: Real Period  sage: E.period_lattice().omega()  gp: if(E.disc>0,2,1)*E.omega[1]  magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E); Tamagawa product: $104$  = $13\cdot2\cdot2\cdot2$ comment: Tamagawa numbers  sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E);  oscar: tamagawa_numbers(E) Torsion order: $2$ comment: Torsion order  sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E));  oscar: prod(torsion_structure(E)[1]) Analytic order of Ш: $1$ (exact) comment: Order of Sha  sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Special value: $L'(E,1)$ ≈ $4.3083236180890913581510438563$ comment: Special L-value  r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: [r,L1r] = ellanalyticrank(E); L1r/r!  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

## BSD formula

$\displaystyle 4.308323618 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.418315 \cdot 0.396124 \cdot 104}{2^2} \approx 4.308323618$

# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)

E = EllipticCurve(%s); r = E.rank(); ar = E.analytic_rank(); assert r == ar;

Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();

omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();

assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))

/* self-contained Magma code snippet for the BSD formula (checks rank, computes analyiic sha) */

E := EllipticCurve(%s); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;

sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);

reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);

assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);

## Modular invariants

$$q + q^{2} - q^{3} + q^{4} - q^{6} - 4 q^{7} + q^{8} + q^{9} + 2 q^{11} - q^{12} - 2 q^{13} - 4 q^{14} + q^{16} + q^{18} + O(q^{20})$$

comment: q-expansion of modular form

sage: E.q_eigenform(20)

\\ actual modular form, use for small N

[mf,F] = mffromell(E)

Ser(mfcoefs(mf,20),q)

\\ or just the series

Ser(ellan(E,20),q)*q

magma: ModularForm(E);

For more coefficients, see the Downloads section to the right.

Modular degree: 99840
comment: Modular degree

sage: E.modular_degree()

gp: ellmoddegree(E)

magma: ModularDegree(E);

$\Gamma_0(N)$-optimal: no
Manin constant: 1
comment: Manin constant

magma: ManinConstant(E);

## Local data

This elliptic curve is not semistable. There are 4 primes of bad reduction:

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $13$ $I_{13}$ Split multiplicative -1 1 13 13
$3$ $2$ $I_{4}$ Non-split multiplicative 1 1 4 4
$5$ $2$ $I_{1}^{*}$ Additive 1 2 7 1
$31$ $2$ $I_{2}$ Split multiplicative -1 1 2 2

comment: Local data

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

oscar: [(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]

## Galois representations

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 2.3.0.1

comment: mod p Galois image

sage: rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

gens = [[2, 1, 619, 0], [1, 0, 4, 1], [3, 4, 8, 11], [1, 2, 2, 5], [1, 4, 0, 1], [777, 466, 464, 775], [994, 1, 743, 0], [1237, 4, 1236, 5], [561, 4, 1122, 9]]

GL(2,Integers(1240)).subgroup(gens)

Gens := [[2, 1, 619, 0], [1, 0, 4, 1], [3, 4, 8, 11], [1, 2, 2, 5], [1, 4, 0, 1], [777, 466, 464, 775], [994, 1, 743, 0], [1237, 4, 1236, 5], [561, 4, 1122, 9]];

sub<GL(2,Integers(1240))|Gens>;

The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level $$1240 = 2^{3} \cdot 5 \cdot 31$$, index $12$, genus $0$, and generators

$\left(\begin{array}{rr} 2 & 1 \\ 619 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 777 & 466 \\ 464 & 775 \end{array}\right),\left(\begin{array}{rr} 994 & 1 \\ 743 & 0 \end{array}\right),\left(\begin{array}{rr} 1237 & 4 \\ 1236 & 5 \end{array}\right),\left(\begin{array}{rr} 561 & 4 \\ 1122 & 9 \end{array}\right)$.

Input positive integer $m$ to see the generators of the reduction of $H$ to $\mathrm{GL}_2(\Z/m\Z)$:

The torsion field $K:=\Q(E[1240])$ is a degree-$54853632000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1240\Z)$.

## Isogenies

gp: ellisomat(E)

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2.
Its isogeny class 4650.x consists of 2 curves linked by isogenies of degree 2.

## Twists

The minimal quadratic twist of this elliptic curve is 930.j1, its twist by $5$.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{10})$$ $$\Z/2\Z \oplus \Z/2\Z$$ Not in database $4$ 4.0.153760.1 $$\Z/4\Z$$ Not in database $8$ deg 8 $$\Z/2\Z \oplus \Z/4\Z$$ Not in database $8$ 8.0.37827420160000.5 $$\Z/2\Z \oplus \Z/4\Z$$ Not in database $8$ deg 8 $$\Z/6\Z$$ Not in database $16$ deg 16 $$\Z/8\Z$$ Not in database $16$ deg 16 $$\Z/2\Z \oplus \Z/6\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 split nonsplit add ord ord ord ss ss ord ss split ord ord ord ord 9 1 - 1 1 1 1,1 1,1 1 1,1 2 1 1 1 1 0 0 - 0 0 0 0,0 0,0 0 0,0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## $p$-adic regulators

$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.