Properties

Label 4650.bi
Number of curves $1$
Conductor $4650$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bi1") E.isogeny_class()
 

Elliptic curves in class 4650.bi

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4650.bi1 4650bv1 \([1, 0, 0, 1112, -255358]\) \(77854483/14478426\) \(-28278175781250\) \([]\) \(16800\) \(1.2603\) \(\Gamma_0(N)\)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curve 4650.bi1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(31\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 5 T + 7 T^{2}\) 1.7.f
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 - 3 T + 19 T^{2}\) 1.19.ad
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 4650.bi do not have complex multiplication.

Modular form 4650.2.a.bi

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} + q^{6} - 5 q^{7} + q^{8} + q^{9} - q^{11} + q^{12} - 5 q^{14} + q^{16} + 4 q^{17} + q^{18} + 3 q^{19} + O(q^{20})\) Copy content Toggle raw display