Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+x^2-2375x-71475\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3+x^2z-2375xz^2-71475z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-3078675x-3288560850\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Infinite order Mordell-Weil generator and height
$P$ | = |
\(\left(65, 200\right)\)
|
$\hat{h}(P)$ | ≈ | $0.20329270008428826090443051610$ |
Integral points
\( \left(65, 200\right) \), \( \left(65, -265\right) \), \( \left(375, 7020\right) \), \( \left(375, -7395\right) \), \( \left(785, 21575\right) \), \( \left(785, -22360\right) \)
Invariants
Conductor: | \( 4650 \) | = | $2 \cdot 3 \cdot 5^{2} \cdot 31$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $-1288311795000 $ | = | $-1 \cdot 2^{3} \cdot 3^{2} \cdot 5^{4} \cdot 31^{5} $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | \( -\frac{2372030262025}{2061298872} \) | = | $-1 \cdot 2^{-3} \cdot 3^{-2} \cdot 5^{2} \cdot 31^{-5} \cdot 4561^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\Z$ | |||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
| |
Sato-Tate group: | $\mathrm{SU}(2)$ | |||
Faltings height: | $1.0210367458699717508072231950\dots$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $0.48455744172527162594030341726\dots$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
BSD invariants
Analytic rank: | $1$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Regulator: | $0.20329270008428826090443051610\dots$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $0.32991096974250503019264350789\dots$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $ 30 $ = $ 1\cdot2\cdot3\cdot5 $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $1$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Analytic order of Ш: | $1$ (exact) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
Special value: | $ L'(E,1) $ ≈ $ 2.0120547547913932273300189357 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
BSD formula
$\displaystyle 2.012054755 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.329911 \cdot 0.203293 \cdot 30}{1^2} \approx 2.012054755$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 7200 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data
This elliptic curve is not semistable. There are 4 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord($N$) | ord($\Delta$) | ord$(j)_{-}$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{3}$ | Non-split multiplicative | 1 | 1 | 3 | 3 |
$3$ | $2$ | $I_{2}$ | Non-split multiplicative | 1 | 1 | 2 | 2 |
$5$ | $3$ | $IV$ | Additive | -1 | 2 | 4 | 0 |
$31$ | $5$ | $I_{5}$ | Split multiplicative | -1 | 1 | 5 | 5 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$5$ | 5B.1.3 | 5.24.0.4 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1240 = 2^{3} \cdot 5 \cdot 31 \), index $48$, genus $1$, and generators
$\left(\begin{array}{rr} 561 & 10 \\ 325 & 51 \end{array}\right),\left(\begin{array}{rr} 311 & 10 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 933 & 630 \\ 20 & 749 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 10 & 1 \end{array}\right),\left(\begin{array}{rr} 1231 & 10 \\ 1230 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 6 & 13 \\ 1185 & 1121 \end{array}\right),\left(\begin{array}{rr} 621 & 10 \\ 625 & 51 \end{array}\right)$.
The torsion field $K:=\Q(E[1240])$ is a degree-$13713408000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1240\Z)$.
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
5.
Its isogeny class 4650.b
consists of 2 curves linked by isogenies of
degree 5.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.6200.1 | \(\Z/2\Z\) | Not in database |
$4$ | \(\Q(\zeta_{5})\) | \(\Z/5\Z\) | Not in database |
$6$ | 6.0.9533120000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | Not in database |
$8$ | 8.2.102249359116875.3 | \(\Z/3\Z\) | Not in database |
$10$ | 10.2.82012500000000.5 | \(\Z/5\Z\) | Not in database |
$12$ | deg 12 | \(\Z/4\Z\) | Not in database |
$12$ | deg 12 | \(\Z/10\Z\) | Not in database |
$20$ | 20.0.33630250781250000000000000000.3 | \(\Z/5\Z \oplus \Z/5\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | nonsplit | add | ord | ord | ord | ord | ss | ord | ord | split | ord | ord | ord | ord |
$\lambda$-invariant(s) | 3 | 1 | - | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | 0 | - | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.