Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
4650.a1 |
4650d1 |
4650.a |
4650d |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{17} \cdot 3^{10} \cdot 5^{2} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$15.18614915$ |
$1$ |
|
$0$ |
$97920$ |
$2.054287$ |
$-36422828671263791996785/239929786368$ |
$[1, 1, 0, -2019280, -1105283840]$ |
\(y^2+xy=x^3+x^2-2019280x-1105283840\) |
4650.b1 |
4650m2 |
4650.b |
4650m |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{15} \cdot 3^{10} \cdot 5^{8} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.24.0.2 |
5B.1.4 |
$1.016463500$ |
$1$ |
|
$4$ |
$36000$ |
$1.825756$ |
$-12882119799145/59982446592$ |
$[1, 1, 0, -35700, 7794000]$ |
\(y^2+xy=x^3+x^2-35700x+7794000\) |
4650.b2 |
4650m1 |
4650.b |
4650m |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{3} \cdot 3^{2} \cdot 5^{4} \cdot 31^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.24.0.4 |
5B.1.3 |
$0.203292700$ |
$1$ |
|
$6$ |
$7200$ |
$1.021036$ |
$-2372030262025/2061298872$ |
$[1, 1, 0, -2375, -71475]$ |
\(y^2+xy=x^3+x^2-2375x-71475\) |
4650.c1 |
4650g2 |
4650.c |
4650g |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( 2^{3} \cdot 3^{14} \cdot 5^{3} \cdot 31^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1$ |
$1$ |
|
$0$ |
$37632$ |
$1.630232$ |
$7598212583918732621/36771465672$ |
$[1, 1, 0, -204785, -35754675]$ |
\(y^2+xy=x^3+x^2-204785x-35754675\) |
4650.c2 |
4650g1 |
4650.c |
4650g |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{6} \cdot 3^{7} \cdot 5^{3} \cdot 31^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$18816$ |
$1.283659$ |
$-1763710408147661/129263387328$ |
$[1, 1, 0, -12585, -582075]$ |
\(y^2+xy=x^3+x^2-12585x-582075\) |
4650.d1 |
4650f4 |
4650.d |
4650f |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( 2^{2} \cdot 3^{6} \cdot 5^{12} \cdot 31^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$1$ |
$1$ |
|
$0$ |
$207360$ |
$2.610039$ |
$28379906689597370652529/1357352437500$ |
$[1, 1, 0, -15886775, -24379212375]$ |
\(y^2+xy=x^3+x^2-15886775x-24379212375\) |
4650.d2 |
4650f3 |
4650.d |
4650f |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{4} \cdot 3^{3} \cdot 5^{9} \cdot 31^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$1$ |
$1$ |
|
$1$ |
$103680$ |
$2.263466$ |
$-6894246873502147249/47925198774000$ |
$[1, 1, 0, -991275, -382561875]$ |
\(y^2+xy=x^3+x^2-991275x-382561875\) |
4650.d3 |
4650f2 |
4650.d |
4650f |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( 2^{6} \cdot 3^{18} \cdot 5^{8} \cdot 31 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$1$ |
$1$ |
|
$0$ |
$69120$ |
$2.060730$ |
$68663623745397169/19216056254400$ |
$[1, 1, 0, -213275, -27331875]$ |
\(y^2+xy=x^3+x^2-213275x-27331875\) |
4650.d4 |
4650f1 |
4650.d |
4650f |
$4$ |
$6$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{12} \cdot 3^{9} \cdot 5^{7} \cdot 31^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$1$ |
$1$ |
|
$1$ |
$34560$ |
$1.714157$ |
$296354077829711/387386634240$ |
$[1, 1, 0, 34725, -2779875]$ |
\(y^2+xy=x^3+x^2+34725x-2779875\) |
4650.e1 |
4650b1 |
4650.e |
4650b |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{8} \cdot 3 \cdot 5^{2} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.780847567$ |
$1$ |
|
$2$ |
$576$ |
$-0.212310$ |
$397535/23808$ |
$[1, 1, 0, 5, -35]$ |
\(y^2+xy=x^3+x^2+5x-35\) |
4650.f1 |
4650j1 |
4650.f |
4650j |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{5} \cdot 3^{3} \cdot 5^{9} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.969268910$ |
$1$ |
|
$4$ |
$7200$ |
$0.842600$ |
$-1115157653/26784$ |
$[1, 1, 0, -2700, 54000]$ |
\(y^2+xy=x^3+x^2-2700x+54000\) |
4650.g1 |
4650i1 |
4650.g |
4650i |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{5} \cdot 3^{2} \cdot 5^{8} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5.607772736$ |
$1$ |
|
$2$ |
$7200$ |
$1.003304$ |
$-1122115892665/8928$ |
$[1, 1, 0, -15825, -772875]$ |
\(y^2+xy=x^3+x^2-15825x-772875\) |
4650.h1 |
4650a5 |
4650.h |
4650a |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( 2^{2} \cdot 3 \cdot 5^{7} \cdot 31^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.24.0.13 |
2B |
$11.77844816$ |
$1$ |
|
$0$ |
$98304$ |
$2.186546$ |
$3216206300355197383681/57660$ |
$[1, 1, 0, -7688000, -8208007500]$ |
\(y^2+xy=x^3+x^2-7688000x-8208007500\) |
4650.h2 |
4650a3 |
4650.h |
4650a |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( 2^{4} \cdot 3^{2} \cdot 5^{8} \cdot 31^{4} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.18 |
2Cs |
$5.889224083$ |
$1$ |
|
$4$ |
$49152$ |
$1.839972$ |
$785209010066844481/3324675600$ |
$[1, 1, 0, -480500, -128400000]$ |
\(y^2+xy=x^3+x^2-480500x-128400000\) |
4650.h3 |
4650a6 |
4650.h |
4650a |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{2} \cdot 3 \cdot 5^{7} \cdot 31^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.90 |
2B |
$11.77844816$ |
$1$ |
|
$0$ |
$98304$ |
$2.186546$ |
$-749011598724977281/51173462246460$ |
$[1, 1, 0, -473000, -132592500]$ |
\(y^2+xy=x^3+x^2-473000x-132592500\) |
4650.h4 |
4650a4 |
4650.h |
4650a |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( 2^{4} \cdot 3^{8} \cdot 5^{14} \cdot 31 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.88 |
2B |
$1.472306020$ |
$1$ |
|
$6$ |
$49152$ |
$1.839972$ |
$5601911201812801/1271193750000$ |
$[1, 1, 0, -92500, 8404000]$ |
\(y^2+xy=x^3+x^2-92500x+8404000\) |
4650.h5 |
4650a2 |
4650.h |
4650a |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{10} \cdot 31^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.24.0.10 |
2Cs |
$2.944612041$ |
$1$ |
|
$8$ |
$24576$ |
$1.493397$ |
$200828550012481/12454560000$ |
$[1, 1, 0, -30500, -1950000]$ |
\(y^2+xy=x^3+x^2-30500x-1950000\) |
4650.h6 |
4650a1 |
4650.h |
4650a |
$6$ |
$8$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{16} \cdot 3^{2} \cdot 5^{8} \cdot 31 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.24.0.1 |
2B |
$1.472306020$ |
$1$ |
|
$7$ |
$12288$ |
$1.146824$ |
$23862997439/457113600$ |
$[1, 1, 0, 1500, -126000]$ |
\(y^2+xy=x^3+x^2+1500x-126000\) |
4650.i1 |
4650e2 |
4650.i |
4650e |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2 \cdot 3 \cdot 5^{6} \cdot 31^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.24.0.4 |
5B.1.3 |
$1$ |
$1$ |
|
$0$ |
$14000$ |
$1.331059$ |
$-300238092661681/171774906$ |
$[1, 1, 0, -34875, -2522625]$ |
\(y^2+xy=x^3+x^2-34875x-2522625\) |
4650.i2 |
4650e1 |
4650.i |
4650e |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{5} \cdot 3^{5} \cdot 5^{6} \cdot 31 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.24.0.2 |
5B.1.4 |
$1$ |
$1$ |
|
$0$ |
$2800$ |
$0.526340$ |
$371694959/241056$ |
$[1, 1, 0, 375, 1125]$ |
\(y^2+xy=x^3+x^2+375x+1125\) |
4650.j1 |
4650l2 |
4650.j |
4650l |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( 2^{11} \cdot 3^{6} \cdot 5^{3} \cdot 31^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1.934797849$ |
$1$ |
|
$4$ |
$25344$ |
$1.545853$ |
$123759873855465821/1378809464832$ |
$[1, 1, 0, -51910, -4529900]$ |
\(y^2+xy=x^3+x^2-51910x-4529900\) |
4650.j2 |
4650l1 |
4650.j |
4650l |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{22} \cdot 3^{3} \cdot 5^{3} \cdot 31^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3.869595698$ |
$1$ |
|
$3$ |
$12672$ |
$1.199280$ |
$-317354125661/108829605888$ |
$[1, 1, 0, -710, -177900]$ |
\(y^2+xy=x^3+x^2-710x-177900\) |
4650.k1 |
4650k2 |
4650.k |
4650k |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{20} \cdot 3^{5} \cdot 5^{8} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.24.0.2 |
5B.1.4 |
$2.787329291$ |
$1$ |
|
$2$ |
$36000$ |
$1.777323$ |
$-553962845641945/7898923008$ |
$[1, 1, 0, -125075, 17182125]$ |
\(y^2+xy=x^3+x^2-125075x+17182125\) |
4650.k2 |
4650k1 |
4650.k |
4650k |
$2$ |
$5$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{4} \cdot 3 \cdot 5^{4} \cdot 31^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.24.0.4 |
5B.1.3 |
$0.557465858$ |
$1$ |
|
$4$ |
$7200$ |
$0.972604$ |
$345168179975/1374199248$ |
$[1, 1, 0, 1250, -40700]$ |
\(y^2+xy=x^3+x^2+1250x-40700\) |
4650.l1 |
4650c1 |
4650.l |
4650c |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2 \cdot 3^{2} \cdot 5^{2} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.331674308$ |
$1$ |
|
$4$ |
$384$ |
$-0.466631$ |
$-5151505/558$ |
$[1, 1, 0, -10, 10]$ |
\(y^2+xy=x^3+x^2-10x+10\) |
4650.m1 |
4650h1 |
4650.m |
4650h |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2 \cdot 3^{5} \cdot 5^{3} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$3360$ |
$0.455624$ |
$77854483/14478426$ |
$[1, 1, 0, 45, -2025]$ |
\(y^2+xy=x^3+x^2+45x-2025\) |
4650.n1 |
4650q1 |
4650.n |
4650q |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{3} \cdot 3^{3} \cdot 5^{19} \cdot 31 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$112320$ |
$2.121918$ |
$-1354547383894636849/8173828125000$ |
$[1, 0, 1, -576276, 169208698]$ |
\(y^2+xy+y=x^3-576276x+169208698\) |
4650.o1 |
4650n1 |
4650.o |
4650n |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{23} \cdot 3^{2} \cdot 5^{2} \cdot 31 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$4416$ |
$0.754850$ |
$3552243132335/2340421632$ |
$[1, 0, 1, 929, -3982]$ |
\(y^2+xy+y=x^3+929x-3982\) |
4650.p1 |
4650s1 |
4650.p |
4650s |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{3} \cdot 3^{13} \cdot 5^{3} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.156992860$ |
$1$ |
|
$8$ |
$3744$ |
$0.735672$ |
$150823633267/395392104$ |
$[1, 0, 1, 554, 9488]$ |
\(y^2+xy+y=x^3+554x+9488\) |
4650.q1 |
4650v1 |
4650.q |
4650v |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{3} \cdot 3^{6} \cdot 5^{8} \cdot 31 \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$1$ |
$1$ |
|
$2$ |
$4320$ |
$0.767930$ |
$-53969305/180792$ |
$[1, 0, 1, -576, 13798]$ |
\(y^2+xy+y=x^3-576x+13798\) |
4650.q2 |
4650v2 |
4650.q |
4650v |
$2$ |
$3$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{9} \cdot 3^{2} \cdot 5^{8} \cdot 31^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$1$ |
$1$ |
|
$0$ |
$12960$ |
$1.317236$ |
$36450495095/137276928$ |
$[1, 0, 1, 5049, -323702]$ |
\(y^2+xy+y=x^3+5049x-323702\) |
4650.r1 |
4650r2 |
4650.r |
4650r |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( 2^{3} \cdot 3^{8} \cdot 5^{7} \cdot 31^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$0.295901425$ |
$1$ |
|
$10$ |
$9216$ |
$1.107643$ |
$461710681489/252204840$ |
$[1, 0, 1, -4026, 22948]$ |
\(y^2+xy+y=x^3-4026x+22948\) |
4650.r2 |
4650r1 |
4650.r |
4650r |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{6} \cdot 3^{4} \cdot 5^{8} \cdot 31 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$0.591802851$ |
$1$ |
|
$9$ |
$4608$ |
$0.761070$ |
$6549699311/4017600$ |
$[1, 0, 1, 974, 2948]$ |
\(y^2+xy+y=x^3+974x+2948\) |
4650.s1 |
4650u1 |
4650.s |
4650u |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{5} \cdot 3^{2} \cdot 5^{8} \cdot 31 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$2400$ |
$0.517323$ |
$7604375/8928$ |
$[1, 0, 1, 299, 2048]$ |
\(y^2+xy+y=x^3+299x+2048\) |
4650.t1 |
4650o2 |
4650.t |
4650o |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( 2^{2} \cdot 3^{2} \cdot 5^{8} \cdot 31 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1$ |
$1$ |
|
$0$ |
$7680$ |
$0.958144$ |
$31942518433489/27900$ |
$[1, 0, 1, -16526, -819052]$ |
\(y^2+xy+y=x^3-16526x-819052\) |
4650.t2 |
4650o1 |
4650.t |
4650o |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{4} \cdot 3 \cdot 5^{7} \cdot 31^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1$ |
$1$ |
|
$1$ |
$3840$ |
$0.611570$ |
$-7633736209/230640$ |
$[1, 0, 1, -1026, -13052]$ |
\(y^2+xy+y=x^3-1026x-13052\) |
4650.u1 |
4650t2 |
4650.u |
4650t |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( 2^{3} \cdot 3^{2} \cdot 5^{9} \cdot 31^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1.672478788$ |
$1$ |
|
$4$ |
$5760$ |
$0.968506$ |
$9814089221/69192$ |
$[1, 0, 1, -5576, 158798]$ |
\(y^2+xy+y=x^3-5576x+158798\) |
4650.u2 |
4650t1 |
4650.u |
4650t |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( 2^{6} \cdot 3 \cdot 5^{9} \cdot 31 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$3.344957576$ |
$1$ |
|
$3$ |
$2880$ |
$0.621932$ |
$10793861/5952$ |
$[1, 0, 1, -576, -1202]$ |
\(y^2+xy+y=x^3-576x-1202\) |
4650.v1 |
4650p1 |
4650.v |
4650p |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{3} \cdot 3^{6} \cdot 5^{10} \cdot 31 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$8640$ |
$1.035231$ |
$116436575/180792$ |
$[1, 0, 1, 2174, -50452]$ |
\(y^2+xy+y=x^3+2174x-50452\) |
4650.w1 |
4650z3 |
4650.w |
4650z |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( 2 \cdot 3^{4} \cdot 5^{9} \cdot 31^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$1$ |
$1$ |
|
$0$ |
$27648$ |
$1.535303$ |
$383432500775449/18701300250$ |
$[1, 1, 1, -37838, -2726719]$ |
\(y^2+xy+y=x^3+x^2-37838x-2726719\) |
4650.w2 |
4650z2 |
4650.w |
4650z |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( 2^{2} \cdot 3^{2} \cdot 5^{12} \cdot 31^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$1$ |
$1$ |
|
$2$ |
$13824$ |
$1.188728$ |
$2023804595449/540562500$ |
$[1, 1, 1, -6588, 148281]$ |
\(y^2+xy+y=x^3+x^2-6588x+148281\) |
4650.w3 |
4650z1 |
4650.w |
4650z |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( 2^{4} \cdot 3 \cdot 5^{9} \cdot 31 \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$1$ |
$1$ |
|
$3$ |
$6912$ |
$0.842155$ |
$1597099875769/186000$ |
$[1, 1, 1, -6088, 180281]$ |
\(y^2+xy+y=x^3+x^2-6088x+180281\) |
4650.w4 |
4650z4 |
4650.w |
4650z |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2 \cdot 3 \cdot 5^{18} \cdot 31 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$1$ |
$4$ |
$2$ |
$0$ |
$27648$ |
$1.535303$ |
$32740359775271/45410156250$ |
$[1, 1, 1, 16662, 985281]$ |
\(y^2+xy+y=x^3+x^2+16662x+985281\) |
4650.x1 |
4650bd2 |
4650.x |
4650bd |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( 2^{13} \cdot 3^{4} \cdot 5^{7} \cdot 31^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$0.396124127$ |
$1$ |
|
$10$ |
$99840$ |
$2.286442$ |
$1152829477932246539641/3188367360$ |
$[1, 1, 1, -5461188, 4909955781]$ |
\(y^2+xy+y=x^3+x^2-5461188x+4909955781\) |
4650.x2 |
4650bd1 |
4650.x |
4650bd |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{26} \cdot 3^{2} \cdot 5^{8} \cdot 31 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$0.198062063$ |
$1$ |
|
$15$ |
$49920$ |
$1.939869$ |
$-281115640967896441/468084326400$ |
$[1, 1, 1, -341188, 76675781]$ |
\(y^2+xy+y=x^3+x^2-341188x+76675781\) |
4650.y1 |
4650bh1 |
4650.y |
4650bh |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{3} \cdot 3^{6} \cdot 5^{4} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.251558754$ |
$1$ |
|
$6$ |
$1728$ |
$0.230511$ |
$116436575/180792$ |
$[1, 1, 1, 87, -369]$ |
\(y^2+xy+y=x^3+x^2+87x-369\) |
4650.z1 |
4650bg2 |
4650.z |
4650bg |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( 2^{3} \cdot 3^{2} \cdot 5^{3} \cdot 31^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$0.324269502$ |
$1$ |
|
$8$ |
$1152$ |
$0.163786$ |
$9814089221/69192$ |
$[1, 1, 1, -223, 1181]$ |
\(y^2+xy+y=x^3+x^2-223x+1181\) |
4650.z2 |
4650bg1 |
4650.z |
4650bg |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( 2^{6} \cdot 3 \cdot 5^{3} \cdot 31 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$0.648539004$ |
$1$ |
|
$7$ |
$576$ |
$-0.182787$ |
$10793861/5952$ |
$[1, 1, 1, -23, -19]$ |
\(y^2+xy+y=x^3+x^2-23x-19\) |
4650.ba1 |
4650bc1 |
4650.ba |
4650bc |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$0.218121016$ |
$1$ |
|
$6$ |
$480$ |
$-0.287396$ |
$7604375/8928$ |
$[1, 1, 1, 12, 21]$ |
\(y^2+xy+y=x^3+x^2+12x+21\) |
4650.bb1 |
4650w1 |
4650.bb |
4650w |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) |
\( - 2^{23} \cdot 3^{11} \cdot 5^{9} \cdot 31^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1$ |
$1$ |
|
$0$ |
$2185920$ |
$3.739586$ |
$-124427822010671478697670089/5317924709672681472000$ |
$[1, 1, 1, -260018713, 1672242709031]$ |
\(y^2+xy+y=x^3+x^2-260018713x+1672242709031\) |