Learn more

Refine search


Results (1-50 of 84 matches)

Next   Download to          
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
4650.a1 4650.a \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $15.18614915$ $[1, 1, 0, -2019280, -1105283840]$ \(y^2+xy=x^3+x^2-2019280x-1105283840\)
4650.b1 4650.b \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $1.016463500$ $[1, 1, 0, -35700, 7794000]$ \(y^2+xy=x^3+x^2-35700x+7794000\)
4650.b2 4650.b \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $0.203292700$ $[1, 1, 0, -2375, -71475]$ \(y^2+xy=x^3+x^2-2375x-71475\)
4650.c1 4650.c \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -204785, -35754675]$ \(y^2+xy=x^3+x^2-204785x-35754675\)
4650.c2 4650.c \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -12585, -582075]$ \(y^2+xy=x^3+x^2-12585x-582075\)
4650.d1 4650.d \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -15886775, -24379212375]$ \(y^2+xy=x^3+x^2-15886775x-24379212375\)
4650.d2 4650.d \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -991275, -382561875]$ \(y^2+xy=x^3+x^2-991275x-382561875\)
4650.d3 4650.d \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -213275, -27331875]$ \(y^2+xy=x^3+x^2-213275x-27331875\)
4650.d4 4650.d \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 34725, -2779875]$ \(y^2+xy=x^3+x^2+34725x-2779875\)
4650.e1 4650.e \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $0.780847567$ $[1, 1, 0, 5, -35]$ \(y^2+xy=x^3+x^2+5x-35\)
4650.f1 4650.f \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $0.969268910$ $[1, 1, 0, -2700, 54000]$ \(y^2+xy=x^3+x^2-2700x+54000\)
4650.g1 4650.g \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $5.607772736$ $[1, 1, 0, -15825, -772875]$ \(y^2+xy=x^3+x^2-15825x-772875\)
4650.h1 4650.h \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $1$ $\Z/2\Z$ $11.77844816$ $[1, 1, 0, -7688000, -8208007500]$ \(y^2+xy=x^3+x^2-7688000x-8208007500\)
4650.h2 4650.h \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $5.889224083$ $[1, 1, 0, -480500, -128400000]$ \(y^2+xy=x^3+x^2-480500x-128400000\)
4650.h3 4650.h \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $1$ $\Z/2\Z$ $11.77844816$ $[1, 1, 0, -473000, -132592500]$ \(y^2+xy=x^3+x^2-473000x-132592500\)
4650.h4 4650.h \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $1$ $\Z/2\Z$ $1.472306020$ $[1, 1, 0, -92500, 8404000]$ \(y^2+xy=x^3+x^2-92500x+8404000\)
4650.h5 4650.h \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.944612041$ $[1, 1, 0, -30500, -1950000]$ \(y^2+xy=x^3+x^2-30500x-1950000\)
4650.h6 4650.h \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $1$ $\Z/2\Z$ $1.472306020$ $[1, 1, 0, 1500, -126000]$ \(y^2+xy=x^3+x^2+1500x-126000\)
4650.i1 4650.i \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -34875, -2522625]$ \(y^2+xy=x^3+x^2-34875x-2522625\)
4650.i2 4650.i \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 375, 1125]$ \(y^2+xy=x^3+x^2+375x+1125\)
4650.j1 4650.j \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $1$ $\Z/2\Z$ $1.934797849$ $[1, 1, 0, -51910, -4529900]$ \(y^2+xy=x^3+x^2-51910x-4529900\)
4650.j2 4650.j \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $1$ $\Z/2\Z$ $3.869595698$ $[1, 1, 0, -710, -177900]$ \(y^2+xy=x^3+x^2-710x-177900\)
4650.k1 4650.k \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $2.787329291$ $[1, 1, 0, -125075, 17182125]$ \(y^2+xy=x^3+x^2-125075x+17182125\)
4650.k2 4650.k \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $0.557465858$ $[1, 1, 0, 1250, -40700]$ \(y^2+xy=x^3+x^2+1250x-40700\)
4650.l1 4650.l \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $0.331674308$ $[1, 1, 0, -10, 10]$ \(y^2+xy=x^3+x^2-10x+10\)
4650.m1 4650.m \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 45, -2025]$ \(y^2+xy=x^3+x^2+45x-2025\)
4650.n1 4650.n \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -576276, 169208698]$ \(y^2+xy+y=x^3-576276x+169208698\)
4650.o1 4650.o \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 929, -3982]$ \(y^2+xy+y=x^3+929x-3982\)
4650.p1 4650.p \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $0.156992860$ $[1, 0, 1, 554, 9488]$ \(y^2+xy+y=x^3+554x+9488\)
4650.q1 4650.q \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, -576, 13798]$ \(y^2+xy+y=x^3-576x+13798\)
4650.q2 4650.q \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 5049, -323702]$ \(y^2+xy+y=x^3+5049x-323702\)
4650.r1 4650.r \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $1$ $\Z/2\Z$ $0.295901425$ $[1, 0, 1, -4026, 22948]$ \(y^2+xy+y=x^3-4026x+22948\)
4650.r2 4650.r \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $1$ $\Z/2\Z$ $0.591802851$ $[1, 0, 1, 974, 2948]$ \(y^2+xy+y=x^3+974x+2948\)
4650.s1 4650.s \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 299, 2048]$ \(y^2+xy+y=x^3+299x+2048\)
4650.t1 4650.t \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -16526, -819052]$ \(y^2+xy+y=x^3-16526x-819052\)
4650.t2 4650.t \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -1026, -13052]$ \(y^2+xy+y=x^3-1026x-13052\)
4650.u1 4650.u \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $1$ $\Z/2\Z$ $1.672478788$ $[1, 0, 1, -5576, 158798]$ \(y^2+xy+y=x^3-5576x+158798\)
4650.u2 4650.u \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $1$ $\Z/2\Z$ $3.344957576$ $[1, 0, 1, -576, -1202]$ \(y^2+xy+y=x^3-576x-1202\)
4650.v1 4650.v \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 2174, -50452]$ \(y^2+xy+y=x^3+2174x-50452\)
4650.w1 4650.w \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -37838, -2726719]$ \(y^2+xy+y=x^3+x^2-37838x-2726719\)
4650.w2 4650.w \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -6588, 148281]$ \(y^2+xy+y=x^3+x^2-6588x+148281\)
4650.w3 4650.w \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $0$ $\Z/4\Z$ $1$ $[1, 1, 1, -6088, 180281]$ \(y^2+xy+y=x^3+x^2-6088x+180281\)
4650.w4 4650.w \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, 16662, 985281]$ \(y^2+xy+y=x^3+x^2+16662x+985281\)
4650.x1 4650.x \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $1$ $\Z/2\Z$ $0.396124127$ $[1, 1, 1, -5461188, 4909955781]$ \(y^2+xy+y=x^3+x^2-5461188x+4909955781\)
4650.x2 4650.x \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $1$ $\Z/2\Z$ $0.198062063$ $[1, 1, 1, -341188, 76675781]$ \(y^2+xy+y=x^3+x^2-341188x+76675781\)
4650.y1 4650.y \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $0.251558754$ $[1, 1, 1, 87, -369]$ \(y^2+xy+y=x^3+x^2+87x-369\)
4650.z1 4650.z \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $1$ $\Z/2\Z$ $0.324269502$ $[1, 1, 1, -223, 1181]$ \(y^2+xy+y=x^3+x^2-223x+1181\)
4650.z2 4650.z \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $1$ $\Z/2\Z$ $0.648539004$ $[1, 1, 1, -23, -19]$ \(y^2+xy+y=x^3+x^2-23x-19\)
4650.ba1 4650.ba \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $0.218121016$ $[1, 1, 1, 12, 21]$ \(y^2+xy+y=x^3+x^2+12x+21\)
4650.bb1 4650.bb \( 2 \cdot 3 \cdot 5^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -260018713, 1672242709031]$ \(y^2+xy+y=x^3+x^2-260018713x+1672242709031\)
Next   Download to