Properties

Label 46410.o
Number of curves 2
Conductor 46410
CM no
Rank 1
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath

sage: E = EllipticCurve("46410.o1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 46410.o

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
46410.o1 46410o2 [1, 1, 0, -3887, -89739] [2] 86016  
46410.o2 46410o1 [1, 1, 0, 193, -5691] [2] 43008 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 46410.o have rank \(1\).

Modular form 46410.2.a.o

sage: E.q_eigenform(10)
 
\( q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} + q^{7} - q^{8} + q^{9} - q^{10} - 2q^{11} - q^{12} - q^{13} - q^{14} - q^{15} + q^{16} - q^{17} - q^{18} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.