Properties

Label 46410.d
Number of curves 4
Conductor 46410
CM no
Rank 1
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath

sage: E = EllipticCurve("46410.d1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 46410.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
46410.d1 46410a4 [1, 1, 0, -389305321043, -93494136872571087] [2] 253624320  
46410.d2 46410a2 [1, 1, 0, -24333584823, -1460601042571323] [2, 2] 126812160  
46410.d3 46410a3 [1, 1, 0, -20930167323, -1883681914046823] [2] 253624320  
46410.d4 46410a1 [1, 1, 0, -1735564903, -15959344729547] [2] 63406080 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 46410.d have rank \(1\).

Modular form 46410.2.a.d

sage: E.q_eigenform(10)
 
\( q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} - q^{7} - q^{8} + q^{9} + q^{10} + 4q^{11} - q^{12} - q^{13} + q^{14} + q^{15} + q^{16} - q^{17} - q^{18} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.