Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
4641.a1 |
4641f1 |
4641.a |
4641f |
$1$ |
$1$ |
\( 3 \cdot 7 \cdot 13 \cdot 17 \) |
\( - 3^{2} \cdot 7 \cdot 13^{3} \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$182$ |
$2$ |
$0$ |
$0.748684411$ |
$1$ |
|
$4$ |
$2208$ |
$0.138159$ |
$-325660672/40000779$ |
$[0, 1, 1, -14, -310]$ |
\(y^2+y=x^3+x^2-14x-310\) |
182.2.0.? |
4641.b1 |
4641b5 |
4641.b |
4641b |
$6$ |
$8$ |
\( 3 \cdot 7 \cdot 13 \cdot 17 \) |
\( 3^{2} \cdot 7^{2} \cdot 13^{8} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.24.0.55 |
2B |
$74256$ |
$192$ |
$1$ |
$0.521669926$ |
$1$ |
|
$8$ |
$12288$ |
$1.381887$ |
$7389727131216686257/6115533215337$ |
$[1, 1, 1, -40579, -3160960]$ |
\(y^2+xy+y=x^3+x^2-40579x-3160960\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 8.24.0-8.n.1.6, 34.6.0.a.1, 68.24.0-68.g.1.1, $\ldots$ |
4641.b2 |
4641b3 |
4641.b |
4641b |
$6$ |
$8$ |
\( 3 \cdot 7 \cdot 13 \cdot 17 \) |
\( 3^{4} \cdot 7^{4} \cdot 13^{4} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.24.0.6 |
2Cs |
$37128$ |
$192$ |
$1$ |
$1.043339852$ |
$1$ |
|
$8$ |
$6144$ |
$1.035313$ |
$3275619238041697/1605271262049$ |
$[1, 1, 1, -3094, -27214]$ |
\(y^2+xy+y=x^3+x^2-3094x-27214\) |
2.6.0.a.1, 4.24.0-4.b.1.1, 68.48.0-68.c.1.2, 104.48.0.?, 168.48.0.?, $\ldots$ |
4641.b3 |
4641b2 |
4641.b |
4641b |
$6$ |
$8$ |
\( 3 \cdot 7 \cdot 13 \cdot 17 \) |
\( 3^{2} \cdot 7^{2} \cdot 13^{2} \cdot 17^{4} \) |
$1$ |
$\Z/2\Z\oplus\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.24.0.5 |
2Cs |
$37128$ |
$192$ |
$1$ |
$2.086679704$ |
$1$ |
|
$14$ |
$3072$ |
$0.688740$ |
$495909170514577/6224736609$ |
$[1, 1, 1, -1649, 24806]$ |
\(y^2+xy+y=x^3+x^2-1649x+24806\) |
2.6.0.a.1, 4.24.0-4.b.1.3, 104.48.0.?, 136.48.0.?, 168.48.0.?, $\ldots$ |
4641.b4 |
4641b1 |
4641.b |
4641b |
$6$ |
$8$ |
\( 3 \cdot 7 \cdot 13 \cdot 17 \) |
\( 3 \cdot 7 \cdot 13 \cdot 17^{2} \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.24.0.45 |
2B |
$74256$ |
$192$ |
$1$ |
$4.173359409$ |
$1$ |
|
$5$ |
$1536$ |
$0.342166$ |
$491411892194497/78897$ |
$[1, 1, 1, -1644, 24972]$ |
\(y^2+xy+y=x^3+x^2-1644x+24972\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 8.24.0-8.n.1.2, 208.48.0.?, 272.48.0.?, $\ldots$ |
4641.b5 |
4641b4 |
4641.b |
4641b |
$6$ |
$8$ |
\( 3 \cdot 7 \cdot 13 \cdot 17 \) |
\( - 3 \cdot 7 \cdot 13 \cdot 17^{8} \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.24.0.45 |
2B |
$74256$ |
$192$ |
$1$ |
$4.173359409$ |
$1$ |
|
$4$ |
$6144$ |
$1.035313$ |
$-2533811507137/1904381781393$ |
$[1, 1, 1, -284, 66302]$ |
\(y^2+xy+y=x^3+x^2-284x+66302\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 8.24.0-8.n.1.2, 104.48.0.?, 168.48.0.?, $\ldots$ |
4641.b6 |
4641b6 |
4641.b |
4641b |
$6$ |
$8$ |
\( 3 \cdot 7 \cdot 13 \cdot 17 \) |
\( - 3^{8} \cdot 7^{8} \cdot 13^{2} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.24.0.55 |
2B |
$74256$ |
$192$ |
$1$ |
$2.086679704$ |
$1$ |
|
$2$ |
$12288$ |
$1.381887$ |
$158346567380527343/108665074944153$ |
$[1, 1, 1, 11271, -193848]$ |
\(y^2+xy+y=x^3+x^2+11271x-193848\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 8.24.0-8.n.1.6, 68.24.0-68.h.1.1, 104.48.0.?, $\ldots$ |
4641.c1 |
4641a3 |
4641.c |
4641a |
$4$ |
$4$ |
\( 3 \cdot 7 \cdot 13 \cdot 17 \) |
\( 3 \cdot 7 \cdot 13 \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.12.0.6 |
2B |
$37128$ |
$48$ |
$0$ |
$6.227030391$ |
$4$ |
$2$ |
$2$ |
$5120$ |
$0.821942$ |
$1677087406638588673/4641$ |
$[1, 1, 1, -24752, -1509184]$ |
\(y^2+xy+y=x^3+x^2-24752x-1509184\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 68.12.0-4.c.1.1, 136.24.0.?, $\ldots$ |
4641.c2 |
4641a2 |
4641.c |
4641a |
$4$ |
$4$ |
\( 3 \cdot 7 \cdot 13 \cdot 17 \) |
\( 3^{2} \cdot 7^{2} \cdot 13^{2} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.12.0.1 |
2Cs |
$18564$ |
$48$ |
$0$ |
$3.113515195$ |
$1$ |
|
$6$ |
$2560$ |
$0.475369$ |
$409460675852593/21538881$ |
$[1, 1, 1, -1547, -24064]$ |
\(y^2+xy+y=x^3+x^2-1547x-24064\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 68.24.0-68.a.1.2, 1092.24.0.?, 18564.48.0.? |
4641.c3 |
4641a4 |
4641.c |
4641a |
$4$ |
$4$ |
\( 3 \cdot 7 \cdot 13 \cdot 17 \) |
\( - 3^{4} \cdot 7^{4} \cdot 13^{4} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.12.0.8 |
2B |
$37128$ |
$48$ |
$0$ |
$1.556757597$ |
$1$ |
|
$4$ |
$5120$ |
$0.821942$ |
$-345608484635233/94427721297$ |
$[1, 1, 1, -1462, -26716]$ |
\(y^2+xy+y=x^3+x^2-1462x-26716\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 68.24.0-68.h.1.1, 2184.24.0.?, 37128.48.0.? |
4641.c4 |
4641a1 |
4641.c |
4641a |
$4$ |
$4$ |
\( 3 \cdot 7 \cdot 13 \cdot 17 \) |
\( 3 \cdot 7 \cdot 13 \cdot 17^{4} \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.12.0.7 |
2B |
$37128$ |
$48$ |
$0$ |
$6.227030391$ |
$1$ |
|
$3$ |
$1280$ |
$0.128795$ |
$117433042273/22801233$ |
$[1, 1, 1, -102, -366]$ |
\(y^2+xy+y=x^3+x^2-102x-366\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 136.24.0.?, 546.6.0.?, 1092.24.0.?, $\ldots$ |
4641.d1 |
4641g1 |
4641.d |
4641g |
$2$ |
$2$ |
\( 3 \cdot 7 \cdot 13 \cdot 17 \) |
\( 3^{5} \cdot 7 \cdot 13 \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$18564$ |
$12$ |
$0$ |
$0.353473160$ |
$1$ |
|
$9$ |
$2240$ |
$0.248647$ |
$10418796526321/6390657$ |
$[1, 0, 0, -455, 3696]$ |
\(y^2+xy=x^3-455x+3696\) |
2.3.0.a.1, 68.6.0.b.1, 546.6.0.?, 18564.12.0.? |
4641.d2 |
4641g2 |
4641.d |
4641g |
$2$ |
$2$ |
\( 3 \cdot 7 \cdot 13 \cdot 17 \) |
\( - 3^{10} \cdot 7^{2} \cdot 13^{2} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$18564$ |
$12$ |
$0$ |
$0.176736580$ |
$1$ |
|
$12$ |
$4480$ |
$0.595221$ |
$-5602762882081/8312741073$ |
$[1, 0, 0, -370, 5141]$ |
\(y^2+xy=x^3-370x+5141\) |
2.3.0.a.1, 68.6.0.a.1, 1092.6.0.?, 18564.12.0.? |
4641.e1 |
4641d1 |
4641.e |
4641d |
$2$ |
$2$ |
\( 3 \cdot 7 \cdot 13 \cdot 17 \) |
\( 3^{3} \cdot 7 \cdot 13 \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$18564$ |
$12$ |
$0$ |
$1.249520914$ |
$1$ |
|
$3$ |
$768$ |
$-0.128720$ |
$10431681625/710073$ |
$[1, 0, 1, -46, 107]$ |
\(y^2+xy+y=x^3-46x+107\) |
2.3.0.a.1, 68.6.0.b.1, 546.6.0.?, 18564.12.0.? |
4641.e2 |
4641d2 |
4641.e |
4641d |
$2$ |
$2$ |
\( 3 \cdot 7 \cdot 13 \cdot 17 \) |
\( - 3^{6} \cdot 7^{2} \cdot 13^{2} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$18564$ |
$12$ |
$0$ |
$0.624760457$ |
$1$ |
|
$4$ |
$1536$ |
$0.217854$ |
$6804992375/102626433$ |
$[1, 0, 1, 39, 481]$ |
\(y^2+xy+y=x^3+39x+481\) |
2.3.0.a.1, 68.6.0.a.1, 1092.6.0.?, 18564.12.0.? |
4641.f1 |
4641c1 |
4641.f |
4641c |
$1$ |
$1$ |
\( 3 \cdot 7 \cdot 13 \cdot 17 \) |
\( - 3^{22} \cdot 7 \cdot 13 \cdot 17^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$182$ |
$2$ |
$0$ |
$3.413422435$ |
$1$ |
|
$0$ |
$32736$ |
$1.563702$ |
$-1302227927110660096/825290486657091$ |
$[0, -1, 1, -22750, 1919349]$ |
\(y^2+y=x^3-x^2-22750x+1919349\) |
182.2.0.? |
4641.g1 |
4641e1 |
4641.g |
4641e |
$1$ |
$1$ |
\( 3 \cdot 7 \cdot 13 \cdot 17 \) |
\( - 3^{6} \cdot 7 \cdot 13 \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$182$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4128$ |
$0.576782$ |
$-2731787761881088/19171971$ |
$[0, 1, 1, -2912, -61465]$ |
\(y^2+y=x^3+x^2-2912x-61465\) |
182.2.0.? |