Properties

Label 463680lt
Number of curves $2$
Conductor $463680$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("lt1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 463680lt

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
463680.lt1 463680lt1 \([0, 0, 0, -81612, -8803216]\) \(8493409990827/185150000\) \(1310470963200000\) \([2]\) \(1966080\) \(1.6890\) \(\Gamma_0(N)\)-optimal
463680.lt2 463680lt2 \([0, 0, 0, 6708, -26855824]\) \(4716275733/44023437500\) \(-311592960000000000\) \([2]\) \(3932160\) \(2.0356\)  

Rank

sage: E.rank()
 

The elliptic curves in class 463680lt have rank \(1\).

Complex multiplication

The elliptic curves in class 463680lt do not have complex multiplication.

Modular form 463680.2.a.lt

sage: E.q_eigenform(10)
 
\(q + q^{5} + q^{7} - 2q^{11} - 2q^{13} + 2q^{17} + 4q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.