Properties

Label 463680jr2
Conductor $463680$
Discriminant $-3.116\times 10^{17}$
j-invariant \( \frac{4716275733}{44023437500} \)
CM no
Rank $2$
Torsion structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more

Show commands for: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([0, 0, 0, 6708, 26855824])
 
gp: E = ellinit([0, 0, 0, 6708, 26855824])
 
magma: E := EllipticCurve([0, 0, 0, 6708, 26855824]);
 

\(y^2=x^3+6708x+26855824\)  Toggle raw display

Mordell-Weil group structure

\(\Z^2 \times \Z/{2}\Z\)

Infinite order Mordell-Weil generators and heights

sage: E.gens()
 
magma: Generators(E);
 

\(P\) =  \(\left(-142, 4800\right)\)  Toggle raw display\(\left(-192, 4300\right)\)  Toggle raw display
\(\hat{h}(P)\) ≈  $0.63473550322778924223387583551$$2.9328076628640162744947609811$

Torsion generators

sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 

\( \left(-292, 0\right) \)  Toggle raw display

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

\( \left(-292, 0\right) \), \((-192,\pm 4300)\), \((-142,\pm 4800)\), \((128,\pm 5460)\), \((333,\pm 8125)\), \((434,\pm 10560)\), \((1458,\pm 56000)\), \((2333,\pm 112875)\), \((33458,\pm 6120000)\)  Toggle raw display

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 463680 \)  =  \(2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 23\)
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: \(-311592960000000000 \)  =  \(-1 \cdot 2^{20} \cdot 3^{3} \cdot 5^{10} \cdot 7^{2} \cdot 23 \)
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( \frac{4716275733}{44023437500} \)  =  \(2^{-2} \cdot 3^{3} \cdot 5^{-10} \cdot 7^{-2} \cdot 13^{3} \cdot 23^{-1} \cdot 43^{3}\)
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: \(2.0356174953654966717545882786\dots\)
Stable Faltings height: \(0.72124365235855128477992878718\dots\)

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Analytic rank: \(2\)
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: \(1.8614754463467886312785560552\dots\)
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: \(0.24121705345941256880587644926\dots\)
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: \( 160 \)  = \( 2^{2}\cdot2\cdot( 2 \cdot 5 )\cdot2\cdot1 \)
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: \(2\)
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: \(1\) (rounded)

Modular invariants

Modular form 463680.2.a.jr

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q + q^{5} - q^{7} + 2q^{11} - 2q^{13} + 2q^{17} - 4q^{19} + O(q^{20}) \)  Toggle raw display

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 3932160
\( \Gamma_0(N) \)-optimal: no
Manin constant: 1

Special L-value

sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 

\( L^{(2)}(E,1)/2! \) ≈ \( 17.960784890192687449046420818306008887 \)

Local data

This elliptic curve is not semistable. There are 5 primes of bad reduction:

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord(\(N\)) ord(\(\Delta\)) ord\((j)_{-}\)
\(2\) \(4\) \(I_{10}^{*}\) Additive -1 6 20 2
\(3\) \(2\) \(III\) Additive 1 2 3 0
\(5\) \(10\) \(I_{10}\) Split multiplicative -1 1 10 10
\(7\) \(2\) \(I_{2}\) Non-split multiplicative 1 1 2 2
\(23\) \(1\) \(I_{1}\) Split multiplicative -1 1 1 1

Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X6.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^1\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right)$ and has index 3.

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.

prime Image of Galois representation
\(2\) B

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]
 

\(p\)-adic regulators are not yet computed for curves that are not \(\Gamma_0\)-optimal.

No Iwasawa invariant data is available for this curve.

Isogenies

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2.
Its isogeny class 463680jr consists of 2 curves linked by isogenies of degree 2.