# Properties

 Label 462e1 Conductor $462$ Discriminant $-6119866368$ j-invariant $$-\frac{7347774183121}{6119866368}$$ CM no Rank $1$ Torsion structure $$\Z/{2}\Z$$

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, 1, 1, -405, 4731])

gp: E = ellinit([1, 1, 1, -405, 4731])

magma: E := EllipticCurve([1, 1, 1, -405, 4731]);

$$y^2+xy+y=x^3+x^2-405x+4731$$

## Mordell-Weil group structure

$\Z\times \Z/{2}\Z$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $P$ = $$\left(-17, 92\right)$$ (-17, 92) $\hat{h}(P)$ ≈ $0.039411059881924719147375335479$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(-25, 12\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-25, 12\right)$$, $$\left(-17, 92\right)$$, $$\left(-17, -76\right)$$, $$\left(-9, 92\right)$$, $$\left(-9, -84\right)$$, $$\left(-3, 78\right)$$, $$\left(-3, -76\right)$$, $$\left(7, 44\right)$$, $$\left(7, -52\right)$$, $$\left(11, 36\right)$$, $$\left(11, -48\right)$$, $$\left(19, 56\right)$$, $$\left(19, -76\right)$$, $$\left(25, 92\right)$$, $$\left(25, -118\right)$$, $$\left(39, 204\right)$$, $$\left(39, -244\right)$$, $$\left(63, 452\right)$$, $$\left(63, -516\right)$$, $$\left(73, 572\right)$$, $$\left(73, -646\right)$$, $$\left(151, 1772\right)$$, $$\left(151, -1924\right)$$, $$\left(487, 10508\right)$$, $$\left(487, -10996\right)$$, $$\left(767, 20868\right)$$, $$\left(767, -21636\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$462$$ = $2 \cdot 3 \cdot 7 \cdot 11$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $-6119866368$ = $-1 \cdot 2^{14} \cdot 3^{2} \cdot 7^{3} \cdot 11^{2}$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$-\frac{7347774183121}{6119866368}$$ = $-1 \cdot 2^{-14} \cdot 3^{-2} \cdot 7^{-3} \cdot 11^{-2} \cdot 19441^{3}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $0.57575726735883852911071307792\dots$ Stable Faltings height: $0.57575726735883852911071307792\dots$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $1$ sage: E.regulator()  magma: Regulator(E); Regulator: $0.039411059881924719147375335479\dots$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $1.2302485152320732392827914712\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $168$  = $( 2 \cdot 7 )\cdot2\cdot3\cdot2$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $2$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $1$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L'(E,1)$ ≈ $2.0363867119453289629351102768$

## Modular invariants

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + q^{2} - q^{3} + q^{4} - 4 q^{5} - q^{6} + q^{7} + q^{8} + q^{9} - 4 q^{10} - q^{11} - q^{12} - 6 q^{13} + q^{14} + 4 q^{15} + q^{16} - 4 q^{17} + q^{18} - 2 q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 672 $\Gamma_0(N)$-optimal: yes Manin constant: 1

## Local data

This elliptic curve is semistable. There are 4 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $14$ $I_{14}$ Split multiplicative -1 1 14 14
$3$ $2$ $I_{2}$ Non-split multiplicative 1 1 2 2
$7$ $3$ $I_{3}$ Split multiplicative -1 1 3 3
$11$ $2$ $I_{2}$ Non-split multiplicative 1 1 2 2

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 2.3.0.1

## $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 split nonsplit ord split nonsplit ord ord ord ord ord ord ord ord ord ord 2 1 1 4 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

## Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2.
Its isogeny class 462e consists of 2 curves linked by isogenies of degree 2.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{-7})$$ $$\Z/2\Z \times \Z/2\Z$$ 2.0.7.1-30492.5-r3 $4$ 4.2.54208.1 $$\Z/4\Z$$ Not in database $8$ 8.0.1180751717376.25 $$\Z/2\Z \times \Z/4\Z$$ Not in database $8$ 8.0.143986855936.3 $$\Z/2\Z \times \Z/4\Z$$ Not in database $8$ 8.2.41497747632.2 $$\Z/6\Z$$ Not in database $16$ Deg 16 $$\Z/8\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \times \Z/6\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.