Learn more

Refine search


Results (1-50 of 428 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
462462.a1 462462.a \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.775842213$ $[1, 1, 0, -361792, -83201180]$ \(y^2+xy=x^3+x^2-361792x-83201180\) 2.3.0.a.1, 12.6.0.a.1, 572.6.0.?, 1716.12.0.? $[(-357, 965)]$
462462.a2 462462.a \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $0.887921106$ $[1, 1, 0, -6052, -3159680]$ \(y^2+xy=x^3+x^2-6052x-3159680\) 2.3.0.a.1, 12.6.0.b.1, 286.6.0.?, 1716.12.0.? $[(237, 2846)]$
462462.b1 462462.b \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -182685184112, -30054132850901760]$ \(y^2+xy=x^3+x^2-182685184112x-30054132850901760\) 8.2.0.b.1 $[ ]$
462462.c1 462462.c \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $2$ $\mathsf{trivial}$ $0.886337240$ $[1, 1, 0, -277, 1555]$ \(y^2+xy=x^3+x^2-277x+1555\) 8.2.0.b.1 $[(-11, 64), (7, 1)]$
462462.d1 462462.d \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $5.457255466$ $[1, 1, 0, -836112, -308621760]$ \(y^2+xy=x^3+x^2-836112x-308621760\) 132.2.0.? $[(25768, 4120960)]$
462462.e1 462462.e \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 50835123, -626518544175]$ \(y^2+xy=x^3+x^2+50835123x-626518544175\) 132.2.0.? $[ ]$
462462.f1 462462.f \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $2$ $\mathsf{trivial}$ $5.570323340$ $[1, 1, 0, 416, -3296]$ \(y^2+xy=x^3+x^2+416x-3296\) 104.2.0.? $[(7, 1), (43, 289)]$
462462.g1 462462.g \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $2$ $\mathsf{trivial}$ $21.94062412$ $[1, 1, 0, -2395439, -1572797211]$ \(y^2+xy=x^3+x^2-2395439x-1572797211\) 104.2.0.? $[(1865, 20303), (11695/2, 1013659/2)]$
462462.h1 462462.h \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $4.545561587$ $[1, 1, 0, 35451, 2526231]$ \(y^2+xy=x^3+x^2+35451x+2526231\) 2184.2.0.? $[(1637, 65895)]$
462462.i1 462462.i \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -2664, 99576]$ \(y^2+xy=x^3+x^2-2664x+99576\) 3.4.0.a.1, 24.8.0.d.1, 231.8.0.?, 1848.16.0.? $[ ]$
462462.i2 462462.i \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 22746, -2009454]$ \(y^2+xy=x^3+x^2+22746x-2009454\) 3.4.0.a.1, 24.8.0.d.1, 231.8.0.?, 1848.16.0.? $[ ]$
462462.j1 462462.j \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -5460323275684, 4911172333049565136]$ \(y^2+xy=x^3+x^2-5460323275684x+4911172333049565136\) 264.2.0.? $[ ]$
462462.k1 462462.k \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $3.019684292$ $[1, 1, 0, -43708711, -111109886411]$ \(y^2+xy=x^3+x^2-43708711x-111109886411\) 2.3.0.a.1, 88.6.0.?, 156.6.0.?, 3432.12.0.? $[(-3921, 4925)]$
462462.k2 462462.k \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $6.039368584$ $[1, 1, 0, -1968551, -2727386955]$ \(y^2+xy=x^3+x^2-1968551x-2727386955\) 2.3.0.a.1, 78.6.0.?, 88.6.0.?, 3432.12.0.? $[(1903, 19604)]$
462462.l1 462462.l \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -656260651, 6470580089989]$ \(y^2+xy=x^3+x^2-656260651x+6470580089989\) 2.3.0.a.1, 88.6.0.?, 168.6.0.?, 924.6.0.?, 1848.12.0.? $[ ]$
462462.l2 462462.l \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -40485491, 103834400685]$ \(y^2+xy=x^3+x^2-40485491x+103834400685\) 2.3.0.a.1, 88.6.0.?, 168.6.0.?, 462.6.0.?, 1848.12.0.? $[ ]$
462462.m1 462462.m \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -375806, 86682996]$ \(y^2+xy=x^3+x^2-375806x+86682996\) 8.2.0.b.1 $[ ]$
462462.n1 462462.n \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -3895476, -2306315304]$ \(y^2+xy=x^3+x^2-3895476x-2306315304\) 2.3.0.a.1, 88.6.0.?, 728.6.0.?, 4004.6.0.?, 8008.12.0.? $[ ]$
462462.n2 462462.n \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -1286716, 530450320]$ \(y^2+xy=x^3+x^2-1286716x+530450320\) 2.3.0.a.1, 88.6.0.?, 728.6.0.?, 2002.6.0.?, 8008.12.0.? $[ ]$
462462.o1 462462.o \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $3.529369924$ $[1, 1, 0, -20451, -1134195]$ \(y^2+xy=x^3+x^2-20451x-1134195\) 156.2.0.? $[(-4042/7, 14659/7)]$
462462.p1 462462.p \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $12.77095122$ $[1, 1, 0, 343759, 2745352779]$ \(y^2+xy=x^3+x^2+343759x+2745352779\) 312.2.0.? $[(374125/33, 1930476551/33)]$
462462.q1 462462.q \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -3243286, -1265680940]$ \(y^2+xy=x^3+x^2-3243286x-1265680940\) 156.2.0.? $[ ]$
462462.r1 462462.r \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $3.021740956$ $[1, 1, 0, -2472516, 1495371354]$ \(y^2+xy=x^3+x^2-2472516x+1495371354\) 2.3.0.a.1, 4.6.0.c.1, 56.12.0.bb.1, 88.12.0.?, 312.12.0.?, $\ldots$ $[(941, 1284)]$
462462.r2 462462.r \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.510870478$ $[1, 1, 0, -160206, 21504960]$ \(y^2+xy=x^3+x^2-160206x+21504960\) 2.6.0.a.1, 44.12.0-2.a.1.1, 56.12.0.a.1, 312.12.0.?, 616.24.0.?, $\ldots$ $[(83, 2923)]$
462462.r3 462462.r \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $3.021740956$ $[1, 1, 0, -41626, -2946236]$ \(y^2+xy=x^3+x^2-41626x-2946236\) 2.3.0.a.1, 4.6.0.c.1, 44.12.0-4.c.1.2, 56.12.0.bb.1, 312.12.0.?, $\ldots$ $[(-99, 515)]$
462462.r4 462462.r \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $3.021740956$ $[1, 1, 0, 254824, 114886710]$ \(y^2+xy=x^3+x^2+254824x+114886710\) 2.3.0.a.1, 4.6.0.c.1, 44.12.0-4.c.1.1, 56.12.0.v.1, 312.12.0.?, $\ldots$ $[(59, 11378)]$
462462.s1 462462.s \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $1.247474385$ $[1, 1, 0, -46, -524]$ \(y^2+xy=x^3+x^2-46x-524\) 1092.2.0.? $[(20, 74)]$
462462.t1 462462.t \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -54558781, 155073778105]$ \(y^2+xy=x^3+x^2-54558781x+155073778105\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 364.12.0.?, 616.12.0.?, $\ldots$ $[ ]$
462462.t2 462462.t \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -21119221, -35742169679]$ \(y^2+xy=x^3+x^2-21119221x-35742169679\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0.h.1, 308.12.0.?, 728.12.0.?, $\ldots$ $[ ]$
462462.t3 462462.t \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -3687961, 2003480725]$ \(y^2+xy=x^3+x^2-3687961x+2003480725\) 2.6.0.a.1, 12.12.0.a.1, 308.12.0.?, 364.12.0.?, 572.12.0.?, $\ldots$ $[ ]$
462462.t4 462462.t \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 580919, 202867141]$ \(y^2+xy=x^3+x^2+580919x+202867141\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 286.6.0.?, 308.12.0.?, $\ldots$ $[ ]$
462462.u1 462462.u \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $2$ $\mathsf{trivial}$ $61.75095637$ $[1, 1, 0, -321322278, -2105880818796]$ \(y^2+xy=x^3+x^2-321322278x-2105880818796\) 858.2.0.? $[(-9988, 332418), (-96845/3, 8932106/3)]$
462462.v1 462462.v \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $2$ $\mathsf{trivial}$ $1.301356245$ $[1, 1, 0, -123, 615399]$ \(y^2+xy=x^3+x^2-123x+615399\) 264.2.0.? $[(17, 778), (127, 1570)]$
462462.w1 462462.w \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $3.603416542$ $[1, 1, 0, -2122705, 635446981]$ \(y^2+xy=x^3+x^2-2122705x+635446981\) 2.3.0.a.1, 308.6.0.?, 546.6.0.?, 1716.6.0.?, 12012.12.0.? $[(2250, 84059)]$
462462.w2 462462.w \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.801708271$ $[1, 1, 0, 7007955, 4658415777]$ \(y^2+xy=x^3+x^2+7007955x+4658415777\) 2.3.0.a.1, 308.6.0.?, 1092.6.0.?, 1716.6.0.?, 12012.12.0.? $[(314, 82849)]$
462462.x1 462462.x \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -429514670, 2100752080596]$ \(y^2+xy=x^3+x^2-429514670x+2100752080596\) 2.3.0.a.1, 88.6.0.?, 104.6.0.?, 572.6.0.?, 1144.12.0.? $[ ]$
462462.x2 462462.x \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 81802290, 231479538228]$ \(y^2+xy=x^3+x^2+81802290x+231479538228\) 2.3.0.a.1, 88.6.0.?, 104.6.0.?, 286.6.0.?, 1144.12.0.? $[ ]$
462462.y1 462462.y \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $2$ $\Z/2\Z$ $2.064470402$ $[1, 1, 0, -4435, -56657]$ \(y^2+xy=x^3+x^2-4435x-56657\) 2.3.0.a.1, 88.6.0.?, 104.6.0.?, 572.6.0.?, 1144.12.0.? $[(-29, 235), (97, 613)]$
462462.y2 462462.y \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $2$ $\Z/2\Z$ $2.064470402$ $[1, 1, 0, 955, -5991]$ \(y^2+xy=x^3+x^2+955x-5991\) 2.3.0.a.1, 88.6.0.?, 104.6.0.?, 286.6.0.?, 1144.12.0.? $[(83, 767), (28, 195)]$
462462.z1 462462.z \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $10.37202593$ $[1, 1, 0, -9830405, -11867485923]$ \(y^2+xy=x^3+x^2-9830405x-11867485923\) 3.4.0.a.1, 21.8.0-3.a.1.1, 156.8.0.?, 1092.16.0.? $[(7595902/43, 10233628353/43)]$
462462.z2 462462.z \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $31.11607779$ $[1, 1, 0, -4938980, -23632928304]$ \(y^2+xy=x^3+x^2-4938980x-23632928304\) 3.4.0.a.1, 21.8.0-3.a.1.2, 156.8.0.?, 1092.16.0.? $[(1197574767513640/551303, 22212561164422917074868/551303)]$
462462.ba1 462462.ba \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -699745, -202676459]$ \(y^2+xy=x^3+x^2-699745x-202676459\) 8.2.0.b.1 $[ ]$
462462.bb1 462462.bb \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $2$ $\Z/2\Z$ $4.615715961$ $[1, 1, 0, -18028595, 29456436717]$ \(y^2+xy=x^3+x^2-18028595x+29456436717\) 2.3.0.a.1, 88.6.0.?, 104.6.0.?, 572.6.0.?, 1144.12.0.? $[(2449, -1396), (9551/2, 33667/2)]$
462462.bb2 462462.bb \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $2$ $\Z/2\Z$ $4.615715961$ $[1, 1, 0, -1125555, 460961901]$ \(y^2+xy=x^3+x^2-1125555x+460961901\) 2.3.0.a.1, 88.6.0.?, 104.6.0.?, 286.6.0.?, 1144.12.0.? $[(-330, 28389), (699, 3693)]$
462462.bc1 462462.bc \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -115445829930, -13236321467612844]$ \(y^2+xy=x^3+x^2-115445829930x-13236321467612844\) 8.2.0.b.1 $[ ]$
462462.bd1 462462.bd \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $1.378792730$ $[1, 1, 0, -462585, 216432693]$ \(y^2+xy=x^3+x^2-462585x+216432693\) 52.2.0.a.1 $[(-78, 15915)]$
462462.be1 462462.be \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -58335, -15315747]$ \(y^2+xy=x^3+x^2-58335x-15315747\) 3.4.0.a.1, 231.8.0.?, 312.8.0.?, 24024.16.0.? $[ ]$
462462.be2 462462.be \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 6345, 504981]$ \(y^2+xy=x^3+x^2+6345x+504981\) 3.4.0.a.1, 231.8.0.?, 312.8.0.?, 24024.16.0.? $[ ]$
462462.bf1 462462.bf \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $2.376069847$ $[1, 1, 0, 2418, 13182]$ \(y^2+xy=x^3+x^2+2418x+13182\) 264.2.0.? $[(299/2, 5993/2)]$
462462.bg1 462462.bg \( 2 \cdot 3 \cdot 7^{2} \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $13.91286652$ $[1, 1, 0, -171217, 375533173]$ \(y^2+xy=x^3+x^2-171217x+375533173\) 24.2.0.b.1 $[(688239/59, 3819014945/59)]$
Next   displayed columns for results