Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-22815x-830466\)
|
(homogenize, simplify) |
\(y^2z=x^3-22815xz^2-830466z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-22815x-830466\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-39, 0)$ | $0$ | $2$ |
Integral points
\( \left(-39, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 462384 \) | = | $2^{4} \cdot 3^{2} \cdot 13^{2} \cdot 19$ |
|
Discriminant: | $\Delta$ | = | $462109580644608$ | = | $2^{8} \cdot 3^{9} \cdot 13^{6} \cdot 19 $ |
|
j-invariant: | $j$ | = | \( \frac{54000}{19} \) | = | $2^{4} \cdot 3^{3} \cdot 5^{3} \cdot 19^{-1}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.5151882046718923958543777983$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.0533438109332551136636212645$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.6712578745765572$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.1983011798213448$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.39970316483624575737321187779$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2\cdot2\cdot2\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $3.1976253186899660589856950223 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $4$ = $2^2$ (exact) |
|
BSD formula
$$\begin{aligned} 3.197625319 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{4 \cdot 0.399703 \cdot 1.000000 \cdot 8}{2^2} \\ & \approx 3.197625319\end{aligned}$$
Modular invariants
Modular form 462384.2.a.cy
For more coefficients, see the Downloads section to the right.
Modular degree: | 884736 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_0^{*}$ | additive | 1 | 4 | 8 | 0 |
$3$ | $2$ | $III^{*}$ | additive | 1 | 2 | 9 | 0 |
$13$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
$19$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 228 = 2^{2} \cdot 3 \cdot 19 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 194 & 1 \\ 131 & 0 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 225 & 4 \\ 224 & 5 \end{array}\right),\left(\begin{array}{rr} 173 & 58 \\ 56 & 171 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 80 & 1 \\ 151 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[228])$ is a degree-$47278080$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/228\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 9633 = 3 \cdot 13^{2} \cdot 19 \) |
$3$ | additive | $2$ | \( 51376 = 2^{4} \cdot 13^{2} \cdot 19 \) |
$13$ | additive | $86$ | \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \) |
$19$ | split multiplicative | $20$ | \( 24336 = 2^{4} \cdot 3^{2} \cdot 13^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 462384cy
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 1368e1, its twist by $156$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.