Properties

Label 4620.n1
Conductor $4620$
Discriminant $-2.376\times 10^{12}$
j-invariant \( -\frac{4890195460096}{9282994875} \)
CM no
Rank $1$
Torsion structure \(\Z/{3}\Z\)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

\(y^2=x^3+x^2-2245x+83975\) Copy content Toggle raw display (homogenize, simplify)
\(y^2z=x^3+x^2z-2245xz^2+83975z^3\) Copy content Toggle raw display (dehomogenize, simplify)
\(y^2=x^3-181872x+61763364\) Copy content Toggle raw display (homogenize, minimize)

sage: E = EllipticCurve([0, 1, 0, -2245, 83975])
 
gp: E = ellinit([0, 1, 0, -2245, 83975])
 
magma: E := EllipticCurve([0, 1, 0, -2245, 83975]);
 
sage: E.short_weierstrass_model()
 
magma: WeierstrassModel(E);
 

Mordell-Weil group structure

\(\Z \oplus \Z/{3}\Z\)

Infinite order Mordell-Weil generator and height

sage: E.gens()
 
magma: Generators(E);
 

$P$ =  \(\left(50, 315\right)\) Copy content Toggle raw display
$\hat{h}(P)$ ≈  $0.23832444413787705089534664050$

Torsion generators

sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 

\( \left(5, 270\right) \) Copy content Toggle raw display

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

\((-55,\pm 210)\), \((-22,\pm 351)\), \((5,\pm 270)\), \((25,\pm 210)\), \((29,\pm 210)\), \((50,\pm 315)\), \((113,\pm 1134)\), \((365,\pm 6930)\), \((545,\pm 12690)\), \((10970,\pm 1149015)\) Copy content Toggle raw display

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 4620 \)  =  $2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 11$
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: $-2376446688000 $  =  $-1 \cdot 2^{8} \cdot 3^{9} \cdot 5^{3} \cdot 7^{3} \cdot 11 $
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( -\frac{4890195460096}{9282994875} \)  =  $-1 \cdot 2^{16} \cdot 3^{-9} \cdot 5^{-3} \cdot 7^{-3} \cdot 11^{-1} \cdot 421^{3}$
Endomorphism ring: $\Z$
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: $1.0645077817841732981821979203\dots$
Stable Faltings height: $0.60240966141087642523737650600\dots$

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Analytic rank: $1$
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: $0.23832444413787705089534664050\dots$
sage: E.period_lattice().omega()
 
gp: if(E.disc>0,2,1)*E.omega[1]
 
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Real period: $0.72872311336521791304126503295\dots$
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: $ 243 $  = $ 3\cdot3^{2}\cdot3\cdot3\cdot1 $
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: $3$
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: $1$ (exact)
sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Special value: $ L'(E,1) $ ≈ $ 4.6891583349260954900707290932 $

Modular invariants

Modular form   4620.2.a.n

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q + q^{3} + q^{5} + q^{7} + q^{9} - q^{11} - 4 q^{13} + q^{15} + 3 q^{17} - 7 q^{19} + O(q^{20}) \) Copy content Toggle raw display

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 7776
$ \Gamma_0(N) $-optimal: yes
Manin constant: 1

Local data

This elliptic curve is not semistable. There are 5 primes of bad reduction:

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $3$ $IV^{*}$ Additive -1 2 8 0
$3$ $9$ $I_{9}$ Split multiplicative -1 1 9 9
$5$ $3$ $I_{3}$ Split multiplicative -1 1 3 3
$7$ $3$ $I_{3}$ Split multiplicative -1 1 3 3
$11$ $1$ $I_{1}$ Non-split multiplicative 1 1 1 1

Galois representations

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$3$ 3B.1.1 3.8.0.1

The image of the adelic Galois representation has level $2310$, index $16$, and genus $0$.

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]
 

Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.

Iwasawa invariants

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add split split split nonsplit ord ord ord ord ord ord ord ord ord ord
$\lambda$-invariant(s) - 6 2 2 1 1 1 1 3 1 3 1 1 3 1
$\mu$-invariant(s) - 0 0 0 0 0 0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 3.
Its isogeny class 4620.n consists of 2 curves linked by isogenies of degree 3.

Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{3}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$3$ 3.1.4620.1 \(\Z/6\Z\) Not in database
$6$ 6.0.24652782000.1 \(\Z/2\Z \oplus \Z/6\Z\) Not in database
$6$ 6.0.6324912.1 \(\Z/3\Z \oplus \Z/3\Z\) Not in database
$9$ 9.3.288178803000000.7 \(\Z/9\Z\) Not in database
$12$ Deg 12 \(\Z/12\Z\) Not in database
$18$ 18.0.56280390065562432115862208000000.1 \(\Z/3\Z \oplus \Z/6\Z\) Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.