Properties

Label 4620.n
Number of curves $2$
Conductor $4620$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("n1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 4620.n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4620.n1 4620n1 \([0, 1, 0, -2245, 83975]\) \(-4890195460096/9282994875\) \(-2376446688000\) \([3]\) \(7776\) \(1.0645\) \(\Gamma_0(N)\)-optimal
4620.n2 4620n2 \([0, 1, 0, 19355, -1788745]\) \(3132137615458304/7250937873795\) \(-1856240095691520\) \([]\) \(23328\) \(1.6138\)  

Rank

sage: E.rank()
 

The elliptic curves in class 4620.n have rank \(1\).

Complex multiplication

The elliptic curves in class 4620.n do not have complex multiplication.

Modular form 4620.2.a.n

sage: E.q_eigenform(10)
 
\(q + q^{3} + q^{5} + q^{7} + q^{9} - q^{11} - 4 q^{13} + q^{15} + 3 q^{17} - 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.