Properties

Label 462.f
Number of curves $4$
Conductor $462$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("f1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 462.f have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 - T\)
\(7\)\(1 - T\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 462.f do not have complex multiplication.

Modular form 462.2.a.f

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} + q^{6} + q^{7} + q^{8} + q^{9} - q^{11} + q^{12} + 2 q^{13} + q^{14} + q^{16} + q^{18} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 462.f

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
462.f1 462g4 \([1, 0, 0, -14133, -647829]\) \(312196988566716625/25367712678\) \(25367712678\) \([2]\) \(576\) \(1.0416\)  
462.f2 462g3 \([1, 0, 0, -823, -11611]\) \(-61653281712625/21875235228\) \(-21875235228\) \([2]\) \(288\) \(0.69498\)  
462.f3 462g2 \([1, 0, 0, -363, 1305]\) \(5290763640625/2291573592\) \(2291573592\) \([6]\) \(192\) \(0.49225\)  
462.f4 462g1 \([1, 0, 0, 77, 161]\) \(50447927375/39517632\) \(-39517632\) \([6]\) \(96\) \(0.14568\) \(\Gamma_0(N)\)-optimal