Show commands:
SageMath
E = EllipticCurve("e1")
E.isogeny_class()
Elliptic curves in class 462.e
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
462.e1 | 462e2 | \([1, 1, 1, -7445, 244091]\) | \(45637459887836881/13417633152\) | \(13417633152\) | \([2]\) | \(1344\) | \(0.92233\) | |
462.e2 | 462e1 | \([1, 1, 1, -405, 4731]\) | \(-7347774183121/6119866368\) | \(-6119866368\) | \([2]\) | \(672\) | \(0.57576\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 462.e have rank \(1\).
Complex multiplication
The elliptic curves in class 462.e do not have complex multiplication.Modular form 462.2.a.e
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.