Properties

Label 460d
Number of curves $1$
Conductor $460$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 460d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
460.a1 460d1 \([0, -1, 0, -10, 17]\) \(-7626496/575\) \(-9200\) \([]\) \(24\) \(-0.49105\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 460d1 has rank \(1\).

Complex multiplication

The elliptic curves in class 460d do not have complex multiplication.

Modular form 460.2.a.d

sage: E.q_eigenform(10)
 
\(q - q^{3} + q^{5} - 2 q^{7} - 2 q^{9} - 4 q^{11} + q^{13} - q^{15} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display