Properties

Label 46090p
Number of curves 2
Conductor 46090
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath

sage: E = EllipticCurve("46090.g1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 46090p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
46090.g2 46090p1 [1, -1, 1, -966882, 365921889] [7] 1419824 \(\Gamma_0(N)\)-optimal
46090.g1 46090p2 [1, -1, 1, -93701832, -349092134751] [] 9938768  

Rank

sage: E.rank()
 

The elliptic curves in class 46090p have rank \(0\).

Modular form 46090.2.a.g

sage: E.q_eigenform(10)
 
\( q + q^{2} - 3q^{3} + q^{4} + q^{5} - 3q^{6} + q^{7} + q^{8} + 6q^{9} + q^{10} + q^{11} - 3q^{12} + q^{14} - 3q^{15} + q^{16} + 4q^{17} + 6q^{18} - 8q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.