Properties

Label 4600.p
Number of curves $1$
Conductor $4600$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("p1")
 
E.isogeny_class()
 

Elliptic curves in class 4600.p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4600.p1 4600j1 \([0, 0, 0, -4675, 123875]\) \(-45198971136/359375\) \(-89843750000\) \([]\) \(6912\) \(0.92999\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 4600.p1 has rank \(0\).

Complex multiplication

The elliptic curves in class 4600.p do not have complex multiplication.

Modular form 4600.2.a.p

sage: E.q_eigenform(10)
 
\(q + 3 q^{3} + 2 q^{7} + 6 q^{9} - q^{13} + O(q^{20})\) Copy content Toggle raw display