Show commands:
SageMath
E = EllipticCurve("p1")
E.isogeny_class()
Elliptic curves in class 4600.p
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
4600.p1 | 4600j1 | \([0, 0, 0, -4675, 123875]\) | \(-45198971136/359375\) | \(-89843750000\) | \([]\) | \(6912\) | \(0.92999\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curve 4600.p1 has rank \(0\).
Complex multiplication
The elliptic curves in class 4600.p do not have complex multiplication.Modular form 4600.2.a.p
sage: E.q_eigenform(10)