Properties

Label 4600.n
Number of curves $1$
Conductor $4600$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("n1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 4600.n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4600.n1 4600o1 \([0, -1, 0, -2208, 40412]\) \(2977540/23\) \(9200000000\) \([]\) \(3840\) \(0.74082\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 4600.n1 has rank \(0\).

Complex multiplication

The elliptic curves in class 4600.n do not have complex multiplication.

Modular form 4600.2.a.n

sage: E.q_eigenform(10)
 
\(q + 2 q^{3} - q^{7} + q^{9} - 5 q^{11} - q^{13} + 4 q^{17} + 7 q^{19} + O(q^{20})\)  Toggle raw display