Show commands:
SageMath
E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 460.c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
460.c1 | 460c1 | \([0, 1, 0, -46, 529]\) | \(-687518464/7604375\) | \(-121670000\) | \([3]\) | \(144\) | \(0.23342\) | \(\Gamma_0(N)\)-optimal |
460.c2 | 460c2 | \([0, 1, 0, 414, -13915]\) | \(489277573376/5615234375\) | \(-89843750000\) | \([]\) | \(432\) | \(0.78273\) |
Rank
sage: E.rank()
The elliptic curves in class 460.c have rank \(1\).
Complex multiplication
The elliptic curves in class 460.c do not have complex multiplication.Modular form 460.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.