Show commands for:
SageMath
sage: E = EllipticCurve("fw1")
sage: E.isogeny_class()
Elliptic curves in class 457776fw
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
457776.fw1 | 457776fw1 | [0, 0, 0, -8157603, -8962245470] | [2] | 21233664 | \(\Gamma_0(N)\)-optimal |
457776.fw2 | 457776fw2 | [0, 0, 0, -6492963, -12725996510] | [2] | 42467328 |
Rank
sage: E.rank()
The elliptic curves in class 457776fw have rank \(1\).
Complex multiplication
The elliptic curves in class 457776fw do not have complex multiplication.Modular form 457776.2.a.fw
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.